
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A VISUAL LANGUAGE FOR COMPOSABLE
SIMULATION SCENARIOS

THESIS

Carolyn R. Bartley, 2nd Lieutenant, USAF

AFIT/GCS/ENG/03-03

AFIT/GCS/ENG/03-03

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the

U. S. Government.

AFIT/GCS/ENG/03-03

A VISUAL LANGUAGE FOR COMPOSABLE SIMULATION SCENARIOS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Systems

Carolyn R. Bartley, BS

2nd Lieutenant, USAF

March 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/03-03

AFIT/GCS/ENG/03-03

Acknowledgements

I would like to say thank you to everyone who helped me along the way. I would

like to give special thanks to Lieutenant Colonel Mathias for helping me keep my

direction and giving me the opportunity to conduct research in the field of composable

simulations. I would also like to thank Lieutenant Colonel Jacobs for helping me discuss

different aspects of the visual language developed.

Finally, I owe my family a big thank-you for their love and support. To my sister

for still answering the phone when I called at 1 am, to my mom for listening to me when I

was stressed out, and to my Dad for reminding me to “stay focused.”

Carolyn R. Bartley

AFIT/GCS/ENG/03-03

vi

Table of Contents

Page

Acknowledgements... v

List of Figures ... xii

List of Tables .. xv

Abstract .. xvi

I. Introduction .. 1

1.1 Purpose... 1

1.2 Background .. 1

1.3 Research Focus .. 3

1.3.1 Objectives.. 3

1.3.2 Assumptions.. 4

1.3.3 Approach... 5

1.4 Summary .. 6

II. Literature Review... 8

2.1 Introduction.. 8

2.2 Modeling and Simulation – An Overview ... 8

2.3 High-level Architecture.. 10

2.4 Composable Simulations.. 12

2.4.1 Definition of a Component.. 12

2.4.2 Benefits of Composable Simulations .. 14

2.4.3 Drawbacks to Composable Simulations: .. 15

2.4.4 Barriers to Composable Simulation .. 16

AFIT/GCS/ENG/03-03

vii

2.5 Reasons to Use Visual Languages/Diagrams... 18

2.6 Syntax and Semantics of Languages.. 20

2.7 Unified Modeling Language .. 21

2.7.1 UML Extensions ... 22

2.7.2 UML and Simulation .. 25

2.7.3 Differences Between Software and Simulations... 28

2.7.4 Why UML is not Ideal for Composable Simulations.. 30

2.8 Representing Behavior ... 31

2.8.1 Object-Oriented Software Behavior Specification Methods and Techniques 32

2.8.2 Process Graphs .. 33

2.8.3 Process Structure Diagrams .. 33

2.8.4 Finite State Transition Diagrams .. 34

2.8.5 Extended Finite State Transition Diagrams .. 35

2.8.6 Mealy Machines/Mealy STD .. 35

2.8.7 Moore Machines ... 36

2.8.8 State Charts ... 36

2.8.9 Process Dependency Diagrams... 37

2.8.10 ROOMCharts .. 39

2.8.11 UML Activity Graphs ... 40

2.8.12 EZStrobe/Activity Cycle Diagrams .. 42

2.8.13 OPNET.. 45

2.8.14 Petri nets.. 46

2.8.15 Hierarchical Finite State Machines ... 48

AFIT/GCS/ENG/03-03

viii

2.8.16 Logic diagrams and User Composable Behaviors .. 50

2.9 TreeMaps ... 51

2.9.1 Basic Concept of Treemaps .. 53

2.9.2 Rules for creating a Treemap .. 53

2.9.3 Potential of Treemaps for representation of simulation scenarios 54

2.10 Summary .. 55

III. Methodology... 57

3.1 Introduction.. 57

3.2 Background .. 57

3.2.1 Composable Simulation .. 58

3.2.2 Motivation of Applying a Visual Language to Composable Simulations

Scenarios .. 58

3.2.3 Differences Between Software and Simulation .. 59

3.2.4 Shortcomings of Current Visual Languages ... 60

3.3 Behavior Properties of Entities in High-level Simulation Behavior:..................... 61

3.4 Drawbacks of the Current Behavior Specification Techniques 62

3.4.1 ROOMCharts .. 63

3.4.2 Activity Graphs ... 63

3.4.3 Activity Cycle Diagrams... 64

3.4.4 OPNET.. 65

3.4.5 Petri Nets... 65

3.4.6 Hierarchical Finite State Machines ... 66

AFIT/GCS/ENG/03-03

ix

3.4.7 Logic Diagrams in Composable Behavior Technologies.................................... 67

3.5 Design Objectives for the Visual Language for Simulation Scenarios.................. 68

3.5.1 Representation of Assigned Behavior in Simulations... 69

3.5.2 Application of TreeMaps .. 69

3.6 The Visual Language ... 70

3.6.1 Properties Needed By the Visual Language.. 70

3.6.2 Areas of Visual Languages not Addressed ... 71

3.7 Evaluation Parameters.. 72

3.7.1 Principles of Modeling Languages ... 72

3.8 Evaluation Criteria ... 74

3.9 Summary .. 76

IV. Language Definition .. 77

4.1 Introduction.. 77

4.2 Simulation Behavior Specification Diagrams (SBSD) .. 77

4.2.2 Components .. 78

4.2.3 Language Adaptability .. 91

4.2.4 Comparison of SBSD to other Behavior Specifications 94

4.3 Application of Treemaps.. 98

4.3.1 Structure of Treemaps ... 98

4.3.2 Treemaps applied to Simulation Scenarios ... 99

4.4 Summary .. 101

V. Implementation and Case Studies .. 102

AFIT/GCS/ENG/03-03

x

5.1 Introduction.. 102

5.2 Description of OneSAF.. 102

5.2.1 Behavior Architecture of OneSAF:... 103

5.3 Application of SBSD to OneSAF Simulation Scenarios 105

5.3.1 Simulation Scenarios and Persistent Objects in OneSAF................................. 106

5.4 Program Supporting SBSD and OneSAF Simulations .. 106

5.4.1 Parsing the Simulation Scenario Files .. 108

5.4.2 The Graphical User Interface .. 109

5.4.2.1 Viewing of the Simulation Scenarios... 112

5.5 Program Supporting TreeMaps.. 113

5.5.1 Implemented Capabilities of the TreeMap Program... 113

5.6 Case Studies ... 115

5.6.1 Case Study One... 115

5.6.2 Case Study Two .. 119

5.6.3 Case Study Three .. 123

5.7 Evaluation of SBSD ... 130

5.8 Summary .. 134

VI. Conclusion and Future Work.. 136

6.1 Introduction.. 136

6.2 Motivation and Objectives ... 136

6.3 Simulation Behavior Specification Diagrams.. 137

6.4 Application of Treemaps.. 138

AFIT/GCS/ENG/03-03

xi

6.5 Future Work ... 139

6.5.1 Further Development of SBSD ... 139

6.5.2 Expansion of the Visual Language for Simulation Scenarios........................... 140

6.6 Summary .. 141

Bibliography ... 143

AFIT/GCS/ENG/03-03

xii

List of Figures

Figure Page

Components of the High-level Architecture [DAH98]... 11

UML Stereotype [FLO02] .. 24

Mapping of UML Diagrams to FOM Tables [STY01]... 28

Schema for the Heat Cooking Tank Use Case [WIE98]... 32

A Process Graph [WIE98] .. 33

A Process Structure Diagram [WIE98]... 34

A Finite State Ttransition Diagram with Labeled States [WIE98] 34

STD of a Mealy Machine [WIE98]. ... 36

STD of a Moore Machine with a Decision State [WIE98]... 37

A State Chart [WIE98].. 38

A Simple Process Dependency Diagram [WIE98]. .. 39

A Simplified ROOMChart for a Dyeing Run Controller [SEL94]................................... 40

Activity graph [FLO99] .. 43

An ACD Diagram for an earth moving operation [MAR01].. 44

A State Transition Diagram Used in OPNET... 46

An Example of a Petri net [ZIM02].. 47

Diagram of a Fly Route Hierarchical State Diagram.. 49

An Example of a Logic Diagram [VON99].. 52

A Treemap of a File Structure [JOH91] ... 54

An Abstract Syntax of Simulation Behavior Specification Diagrams.............................. 78

AFIT/GCS/ENG/03-03

xiii

Visual Representations of an Atomic and Multi-task Node ... 79

An SBSD diagram with a Multi-task Node .. 82

Visual Representations of Transitions in SBSD ... 85

An Example SBSD Diagram .. 92

An SBSD Diagram with a Temporary Reaction Transition ... 93

Organizational Chart of an US M1 Company... 100

Treemap of an US M1 Company .. 100

Execution Matrix Used in the OTB .. 105

Representation of aTask Frame in a Scenario File ... 107

References Between Task Frames and Units in the Java Program................................. 110

Screen Shot of the Graphical User Interface for SSST... 111

A Mission with a Multi-task Node Condensed and Expanded....................................... 112

A Treemap of a OneSAF Scenarios.. 114

A Treemap Coloring the Units Based on Capability .. 116

Execution Matrices for the Entities in Case Study One.. 117

The SBSD Diagram Showing the Behaviors Assigned to the Entities........................... 118

The SBSD Diagrams for the Behaviors Actually Performed by the Entities in Case Study

One.. 119

Actions Performed by US F14D, including the Reaction Tasks 120

An SBSD Diagram for a USSR MIG27D in Case Study Two....................................... 121

An SBSD Diagram of an Attack Ground Target Task Frame .. 122

An SBSD Diagram of the Traveling Overwatch Task Frame .. 122

An SBSD Diagram of an Assault Task Frame.. 124

AFIT/GCS/ENG/03-03

xiv

Execution Matrices for Units in Case Study Three .. 125

SBSD Diagrams for the Execution Matrices in Figure 43.. 126

SBSD for RWA Fly Route Task Frame.. 127

Expanded Multi-Task node for React to Ground Contact Sub Activity......................... 127

SBSD for Hover Task Frame.. 128

SBSD Diagram for the RWA Fly Route Task Frame Assigned to a US CH47D Vehicle

... 129

AFIT/GCS/ENG/03-03

xv

List of Tables

Table Page

Available Behavior Nodes for the Behavior Editor in CBT[VON99].............................. 51

Implemented Temporal Constraints in CBT [VON99] .. 51

Comparison of Behavioral Specification Techniques... 98

AFIT/GCS/ENG/03-03

xvi

Abstract

Modeling and Simulation plays an important role in how the Air Force trains and

fights. Scenarios are used in simulation to give users the ability to specify entities and

behaviors that should be simulated by a model: however, building and understanding

scenarios can be a difficult and time-consuming process. Furthermore, as composable

simulations become more prominent, the need for a common descriptor for simulation

scenarios has become evident.

 In order to reduce the complexity of creating and understanding simulation

scenarios, a visual language was created. The research on visual languages presented in

this thesis examines methods of visually specifying the high-level behavior of entities in

scenarios and how to represent the hierarchy of the entities in scenarios. Through a study

of current behavior specification techniques and the properties of mission-level

simulation scenarios, Simulation Behavior Specification Diagrams (SBSD) were

developed to represent the behavior of entities in scenarios. Additionally, the information

visualization technique of treemaps was adapted to represent the hierarchy of entities in

scenarios.

 After completing case studies on scenarios for the OneSAF simulation model,

SBSDs and the application of treemaps to scenarios was considered successful. SBSD

diagrams accurately represented the behavior of entities in the simulation scenarios and

through software can be converted into code for use by simulation models. The treemap

displayed the hierarchy of the entities along with information about the relative size of

the entities when applied to simulation scenarios.

1

A VISUAL LANGUAGE FOR COMPOSABLE SIMULATION SCENARIOS

I. Introduction

1.1 Purpose

Over the next 20 years, the shift from “a threat-based force to a capabilities-based

force” along with the “trend toward the information and cognitive warfare and away from

platform-centric approaches” will cause modeling and simulation’s role in the military

forces to become increasingly important [DMS02]. However, the current state of

simulation and modeling will not be able to fully support the future modeling and

simulation needs of the military forces. As noted by a key study of the DoD

transformation process, “A new generation of models and simulations will be needed to

support distributed training; robust and continuous experimentation; operational

planning, execution, and assessment tools [DMS02].”

One of the major difficulties with the current modeling and simulation process is

the length of time it takes to complete simulation scenarios. A single scenario can take

weeks or even months to build. Therefore, the purpose of this thesis is to develop a

visual language for the representation of different aspects of simulation scenarios, which

in turn will make simulation scenarios easier to compose and comprehend.

1.2 Background

Due to the large amount of simulation data already in existence and the large

overhead in simulation and modeling, there have been several studies completed which

focus on how to reuse simulation models (or components of the models) and how to get

2

different simulations models to run together. A relatively recent trend in modeling and

simulations is the study of “Composable Interoperability.” The idea behind composable

interoperability is two fold. Interoperability deals with the idea that multiple simulation

applications with different levels of fidelity and communication protocols have the ability

to work with each other. Composable simulations on the other hand, are simulations built

out of predefined components (or entities) that can be modified and used by multiple

simulations. The scenarios created for these simulations are defined by the components

in the scenario and the relationship between the components. A component can be

anything from the representation of a bolt on an engine, to the model of an army brigade.

Although there are many benefits to composable simulations, there are also many

challenges that have to be overcome before composable simulations become a reality.

The lack of a common language describing the components and architectures of the

components in simulation scenarios is one such obstacle.

Visual languages have been used in several other disciplines as a common

descriptor for systems and the components that make up the systems. The aspects of

systems and their components described by visual languages include structure, behavior,

relationships, and communications between the components of the system. Visual

languages have many benefits as diagrams can represent complex relationships and

communicate structure better then text alone. They also aid in comprehension as they

eliminate searching and support perceptual inferences [HOR98].

3

1.3 Research Focus

The focus of the research presented in this thesis is on how to best visually

represent the scenarios created for simulations used by the Department of Defense. The

visual representation of behaviors assigned to components and the hierarchy among the

components in the scenarios are two aspects of scenarios that are addressed.

Furthermore, the research works to identify other areas of composable simulations that

can be better represented through visual representation.

1.3.1 Objectives

The overall objective of the research presented is to create a visual language that

aids in the comprehension and composition of simulation scenarios. In particular, the

language is intended to help in the development and comprehension of composable

simulation scenarios at the mission-level by allowing for easier comprehension of the

behavior of, and hierarchical relationships between, the entities in the scenarios. By

modeling the components of simulation scenarios it is the hypothesis of this thesis that

the visual language developed will increase the understanding of the structure and

behavior of components used in simulation scenarios. Furthermore by having a common

language to describe the simulation scenarios, the language serves as a basis for a tool

that could potentially allow for one scenario to be generated for multiple simulation

environments, or for the conversion of a simulation scenario from one environment into a

simulation scenario for another environment.

The main objective has been broken into two sub-objectives. The first sub-

objective is the development of a visual language that describes the assigned behavior of

4

components acting as entities in simulation scenarios. By creating a visual language to

describe the events that entities perform in a simulation, the visual language aids in the

comprehension of already completed scenarios and the in the development of new

scenarios.

The second sub-objective is to facilitate the navigation and understanding of

hierarchies in mission-level simulation scenarios. This objective is achieved through the

application of treemaps to the hierarchy of units and entities in mission-level simulation

scenarios. By applying treemaps to the hierarchy of entities in the scenarios, users of the

simulation can look at all the entities in the battlefield in a single space, without having to

trace through long lists of units or maximize/minimize nodes of a tree. Furthermore, by

customizing the properties of the treemap, such as color and the borders of the boxes used

to represent the hierarchy, the user is given the ability to customize the treemap to present

the desired information in a way that assists user comprehension.

1.3.2 Assumptions

This thesis focuses on representing the behavior and hierarchy of components in

scenarios of mission-level models. The test simulation for the research is the OneSAF

simulation used by the United States Army. By focusing the research to one level of

simulation modeling it reduces the problems introduced by combining components of

different levels of abstraction. However, the ideas presented in this research are

applicable to all levels of simulation.

5

1.3.3 Approach

The approach used to conduct the research for this thesis consisted of four major

steps. First, an in depth study was completed on the benefits, problems, and obstacles

associated with composable simulation. Through the study of current simulation models

and composable simulation models currently under development, the parts of assigned

entity behavior in scenarios that need to be represented for comprehension and execution

of the scenarios were identified. Concurrently, a review of methods used for behavior

specification and process modeling in software engineering and simulation was

conducted.

An evaluation of the benefits and limitations of the behavior specification

methods when applied to the domain of behaviors assigned to entities in simulation

scenarios served as a justification for the development of behavior specification diagrams

presented in Chapter 4. The development of a visual behavior specification model for

simulation scenarios was the second step of the research. During development, visual

components were selected to represent the different aspects of the high-level behavior of

the entities in simulations. Syntax and semantics were then added to the each of the

components in order to present a complete visual language.

Third, to further justify why a new visual language was needed and to

demonstrate that the language covers the different behavioral aspects of entities in

simulation scenarios several case studies were implemented. The scenarios used for the

case studies were selected to demonstrate how the current behavior specification models

fail to handle different aspects of simulations, and how the new diagrams handle these

aspects. Furthermore, the case studies cover several different areas of mission-level

6

simulations to show that the diagrams developed cover a wide range of simulation

behavior.

Finally, a program to support the creation and analysis of simulation scenarios

was implemented. A GUI that allows users to assign behaviors to the entities in

scenarios, through dropping and dragging components of the visual language onto the

screen serves as the integral part of the program. The purpose of the program is to show

that by using the behavior specification model presented in this thesis to visually

represent different aspects of scenarios, composable simulation scenarios are easier to

build and understand. The program implemented serves as a starting point for future

research. A proposed final goal of the program is to have a tool that is able to generate

code for one simulation or multiple simulations using the visual language as input.

In addition to the above steps the information visualization technique of treemaps

was applied to the hierarchy of the entities in battlefield simulation scenarios. The

application of the treemaps shows how different aspects of the scenario can be enhanced

through modification of treemap properties.

1.4 Summary

In the world of simulation and modeling, composable simulations are the future.

Currently, however, composable simulations are difficult to build and maintain due to

their complexity and lack of standard representation. In the research conducted for this

thesis, a visual language is applied to simulation and modeling in order to reduce the

complexity of, and serve as a standard descriptor for, certain aspects of simulation

scenarios. The validity and success of the language developed is shown through case

7

studies and the implementation of a program that uses the visual language developed to

graphically represent the behaviors of the entities in the simulation scenarios. The

program also demonstrates the use of applying treemaps to the hierarchy of entities in

simulation scenarios.

The next five chapters present the research and results of this thesis. Chapter 2,

Literature Review, gives a background on composable simulations, visual languages,

behavior specification techniques, and treemaps. Chapter 3, Methodology, presents the

motivation, goals, evaluation techniques, and success criteria used in the research

conducted for this thesis. Chapter 4, Language Definition, consists of a breakdown of the

components of the visual language developed for behavior specification of entities and

the application of treemaps to simulation scenarios. Case studies and the application of

the visual langue to OneSAF scenarios through a Java program are discussed in Chapter

5, Implementation and Case Studies. The conclusion, along with ideas for future work is

presented in Chapter 6, Conclusions and Future Work.

8

II. Literature Review

2.1 Introduction

The research of this thesis focuses on developing a visual language for

composable simulations. In particular, the research deals with developing a visual

language to describe the high-level behavior of entities in simulation scenarios and the

application of treemaps to them in order to reduce their complexity. In order to form a

basis for the language developed in Chapter 4 and to apply treemaps to simulation

scenarios, several different research areas were examined. This chapter presents a review

of these areas. The first area discussed is the domain of simulation and modeling. In

this section a close look is taken at the benefits, problems, and challenges of composable

simulations. The next research area presented are topics related to visual languages

including the benefits of using visual languages, the components of visual languages

definitions, and the Unified Modeling Language. Next, behavior specification techniques

used in software engineering and simulation models are examined. Finally, this chapter

concludes with a brief discussion on the information visualization technique of treemaps.

2.2 Modeling and Simulation – An Overview

As the problem that this thesis attempts to solve is in the field of modeling and

simulation, it is important to gain at least a basic understanding of modeling and

simulation. In the Modeling and Simulation Master Plan published by the Air Forces’

Directorate of Modeling, Simulation, and Analysis, a model is defined as: “a physical,

mathematical, or otherwise logical representation of a system, entity, phenomenon or

9

process” [DMS95]. Mathematical models serve as an abstract representation of the

system and provide a way of developing quantitative performance requirements. Static

models are used to represent a state of a system, and dynamic models show conditions of

the system that change with time. Models and simulations are used in several different

domains including education and training, acquisition, operational planning, and

experimentation [DMS95].

Models and simulations used by the United States military can be broken into a

hierarchy based on the fidelity of the system and what is being modeled. At the bottom

of the hierarchy are engineering models. Engineering models are used for design, cost,

and manufacturing supportability. Engagement models sit one level above engineering

models and assist in the evaluation of system effectiveness against enemy systems. At

the next level, mission-level models measure the “effectiveness of a force package or

multiple platforms performing a specific mission” [DMS95]. Finally, theater/campaign-

level models predict the “outcomes of joint/combined forces in a theatre/campaign level

conflict” [DMS95]. The research conducted for this thesis is on mission-level models,

although the results are applicable to the other levels of models in the hierarchy.

Simulation plays an important role in military training and operation. Changes in

technology will transform how the military forces organize, train, procure new weapons,

and operate. In order to support this transformation, simulation must also change. A key

study of the Department of Defense transformation processes noted that, “A new

generation of models and simulations will be needed to support distributed training:

robust and continuous experimentation; and operational planning, execution, and

assessment tools” [DMS02]. One way that modeling and simulation is being transformed

10

is by the development of composable and distributed simulations. In 1995, the Defense

Modeling and Simulation Office (DMSO) initiated the DMSO High-level Architecture

program, which served as the first step in addressing some of the issues surrounding the

interoperability of simulation components which is an integral part of composable

simulations.

2.3 High-level Architecture

The High-level Architecture (HLA) sponsored by DMSO provides a general

software architecture for distributed systems. It was created under the idea that no

simulation can satisfy all uses and users, and provides a structure to support the reuse of

capabilities available in different simulations [DAH98].

The reusability of HLA is based around the concept of an HLA federation, which

is “a composable set of interacting simulations,” and allows for simulations “developed

for one purpose to be applied to another application” [DAH98]. A federation consists of

the three functional components depicted in Figure 1. The simulations, referred to as

federates, make up the first functional component of a federation. All object

representation is done through federates and each federate must contain specified

capabilities that allow the objects in one simulation to communicate with objects in

another simulation through the runtime infrastructure (RTI). The RTI is the second

component and serves as a distributed operating system for the federation. The RTI

supports the simulations by providing a set of services that carry out federate-to-federate

interactions and federation management support functions. The runtime

11

Figure 1. Components of the High-level Architecture [DAH98]

interface makes up the third component of the HLA federation. The runtime interface

provides standard methods for federates to interact with the RTI, to invoke the RTI

services, and to respond to requests from the RTI. The HLA also supports the passive

collection of simulation data and monitoring of simulation activities and interfaces to live

participants [DAH98].

HLA is formally defined by the interface specification, the object model template

(OMT), and the HLA rules. “The HLA interface specification describes the runtime

services provided by the federates to the RTI” while, “HLA object models are

descriptions of the essential sharable elements in the simulation or federation in ‘object’

terms” [DAH98]. There are no constraints on the content of an object model. However,

each federate and federation must document its model using a standard object model

12

specification. The specification provides open information sharing across the simulation

community to facilitate the reuse of simulations [DAH98].

Despite the work that HLA has done to promote reusability and composability

among simulation models it is commonly agreed that the architecture provided by the

HLA is not strong enough to provide true composability in simulations. Furthermore,

HLA is difficult to understand and has a steep learning curve. Finally, HLA is used to

describe the architecture of the simulation and the components used by the simulation,

not the scenarios created for the simulations.

2.4 Composable Simulations

Beyond HLA lies the idea of composable simulations. The concept of

composable simulations is one of the current focuses of not only DMSO, but the field of

modeling and simulation as a whole. The following sections provide a brief overview of

what composable simulation is, the benefits that can be achieved from composable

simulations, the drawbacks of composable simulations, and some of the challenges that

need to be met before composable simulations can become a reality.

2.4.1 Definition of a Component

 In Proposal For Composable Modeling and Simulation Studies produced by

DMSO the following definition of components is given:

Components are similar to classes, but generally their implementation is completely hidden.
Components may be implemented by a single class, more than one class, or even by a traditional
procedure or function in a non-object oriented programming language. Components also conform to
the standards defined by a component model [DMS02]

13

Components were also defined at the Composable Modeling and Simulation Workshop.

At the workshop a group discussing the concept of operations for composable simulations

listed the following properties of a components [DMS02b]:

1. May be used by other software elements (clients).

2. May be used by clients without the intervention of component developers.

3. Includes a specification of all dependencies (hardware and software platform,
versions, other components).

4. Includes a precise specification of the functionalities it offers.

5. Is usable on the sole basis of that specification.

6. Is easily composable with other components.

7. Can be integrated.

The group also noted that:

1. Components are NOT objects in the OO sense.

2. Not just software (data too), not just module level.

3. Open source desirable but not required.

Other articles discussing composable simulation also gave more definitions and

properties of components [DMS02d], [DMS02e], [BID00]. However, despite the

differences between the definitions of components, they all share similar themes. First,

components are entities that can stand on their own. Second, components provide an

interface by which they interact with other components and parts of the system.

Therefore, based on these properties two components that have the same interface should

be able to be interchanged in a system with minimal impact on the implementation of the

system. The third common property is that complex components are built from simpler

components which allows for components to act as building blocks.

14

2.4.2 Benefits of Composable Simulations

According to Kasputis and Ng in their research on composable simulations

presented in Model Composability: Formulating a Research Thrust: Composable

Simulations [KAS00], composable simulations have the potential to offer several benefits

to the simulation community. These benefits include providing higher-quality

simulations, lowering the development time of simulations, and lowering the cost of

simulations [KAS00].

Kasputis and Ng indicate that there are five main ways composable simulations

can contribute to higher quality simulations. First, composable simulations will provide a

higher comprehensiveness of simulations. In simulations, comprehensiveness is the

ability of a simulation to “address all aspects of the problem under investigation and

represent all potentially important factors within the mission space” [KAS00]. Due to

time, budget, and constraints of knowledge of real world systems, simulations often lack

the comprehensiveness that the user would like or need. By promoting re-usability of

algorithms, information, and models through the use of components, redundancies

between the models can be reduced and more time can be spent on developing other

desired aspects of the real world [KAS00]. The programming language Java supports the

reusability of algorithms and models by providing standard libraries that support

commonly used elements such as lists, strings, and hash tables. Developers using Java

save time by tailoring the Java elements to their need, instead of re-creating the element.

Next, composable simulations will help to provide consistency and improve the

validity of simulation models. Consistency is needed as simulations are becoming multi-

resolution, because the outcome of the simulations must not change as the models are run

15

at different levels of fidelity. Composable simulations can support consistency by

providing detailed module descriptors and by allowing for complete and proper testing of

the library of modules. Improved validity of the simulations would produce higher

quality simulations as validation and verification efforts could be concentrated on the

library of components for a system [KAS00].

Two other major benefits that composable simulations have to offer are a quicker

production time and a lower cost for simulations. One key factor in decreasing the time it

takes to build simulations is reducing the setup and initialization time of simulations

scenarios. In [KAS00] Kasputis and Ng indicate that “many current simulations take

considerable time and effort to setup and initialize.” Through composable simulation

setup time can be reduced as users can reuse pieces of code, making modifications as

needed. Second, the time for analysis of simulation results can be reduced as composable

simulation are envisioned to have the capability to produce only the desired information,

by filtering out the data the user does not want and calculating user selected statistics.

The lower costs that composable simulations have the potential to provide come from the

reuse of software and software designs and potentially lower maintenance costs [KAS00].

2.4.3 Drawbacks to Composable Simulations:

Despite the benefits of composable simulations, composable simulations are

difficult to develop. When looking at the price of composable simulations, members

attending the Composable Modeling and Simulation Workshop identified several factors

contributing to the cost of composable simulations. First, they indicated that it is more

difficult and expensive to build simulations that are composable. They also questioned if

16

the configuration management cost of composable simulations would be lower.

Furthermore, although the life cycle of the composable simulations is shorter, it may not

be short enough to compensate for the higher initial cost and the higher cost of general

purpose applications. Finally, the members noted that working with composable

simulations required the developer to understand networks and other things outside their

component [DMS02b].

2.4.4 Barriers to Composable Simulation

In addition to the costs of composable simulations there are many barriers that

need to be crossed before composable simulations can become a reality. In the article,

“A Model-Based Approach to Simulation Composition,” Aronson and Bose identify four

major sub-problems related to simulation composition [ARO99]:

1. Capturing a simulation scenario defining the target system

2. Constructing a software-based structural model

3. Selecting components which satisfy the structural model and global non-
functional constraints

4. Determining the inter-component coordination

The first sub-problem deals with conversion of requirements to relevant domain

entities, activities, and behaviors used in the simulation [ARO99]. This problem is

similar to the problem of going from use cases to system design, as found in software

engineering.

The second sub-problem of “constructing a software based structural model” is

concerned with the problem of matching the functional elements in the simulation

scenario to a structure where all the components are connected correctly, interoperate

17

consistently, and still stratify the functional requirements [ARO99]. The problem exists

because it is possible to have components that individually meet the functional

requirements, while the combination of the components does not.

The third sub-problem deals with how the user selects the best component if a

large repository or several distributed repositories are available. With a large number of

available components the correct component needs to be selected easily. This sub-

problem parallels searching the Internet, in that there is a lot of information available on

the Internet, but it is not always easy to find the information that best fits the need of the

user.

The final sub-problem addresses the issue of how to deal with the overall

synchronization of the components and the communication between the different

components in composable simulations [ARO99]. This problem focuses on the

architecture of composable simulations and the communication that occurs between the

components in the architecture.

Another challenge faced by composable simulations is the lack of guiding

principles. Kasputis and Ng believe that “unless models are designed to work together –

they don’t” [KAS00]. In the past, simulations were built for one simulation program

without regard to how they might work with another simulation. The set of simulations

used by the Department of Defense is an example of this occurrence. Currently there are

multiple mission-level simulations, but because of the way each system was built, it is

very difficult to make the simulations work together. HLA is an attempt to get the

simulations to work together, but has been shown to be less than an ideal solution.

18

The research presented above shows that although developing composable

simulations is a difficult engineering problem, the potential benefits are quite good.

However, in order for composable simulations to be beneficial many challenges have to

be met. Many of the problems and challenges composable simulations face parallel the

problems and challenges found in software engineering. Software engineering deals with

classes, objects, object behavior, components, system behavior, etc. In order to help

reduce the complexity brought on by the size and domain of the systems being built the

software engineering community has developed visual languages to help developers

better understand software systems, the pieces that compose systems, and the behavior of

systems and components within the systems. Therefore, a visual language, becomes an

ideal candidate to not only help reduce the complexity of simulation scenarios, but to also

help provide unity and a common guideline on which to build components used in

composable simulation scenarios.

2.5 Reasons to Use Visual Languages/Diagrams

 Every day people use diagrams to communicate information. Diagrams have

several important functions and benefits that make them the ideal choice to communicate

certain types of information. First, diagrams represent complex relationships better then

text alone [HOR98]. Problems that occur when the number of novel elements and their

connections get bigger than the capacity of short term memory can be solved by using

diagrams. Second, as diagrams help to “organize and manage problems and issues” of

abstract elements, they make the abstract concrete [HOR98]. Diagrams also easily show

concepts, like changes in time and branching that are difficult to communicate through

19

written prose. Furthermore, structure is often communicated more efficiently with a

diagram, than through text alone. For example, a family tree is simpler to understand and

communicates the same relationships much more effectively than a text paragraph

relating the same information [HOR98].

For several reasons, diagrams are better than prose for many types of information.

First, because diagrams “group together all the information that is used together”

searching for elements needed to solve a problem is eliminated [HOR98]. Second the

matching of symbolic labels is avoided as diagrams group information about single

elements. Diagrams also “support a large number of perceptual inferences” and “help the

learner build runnable mental models” that portray “each major state that each component

can be in and the relations between a state change in one component and the state

changes in other components”[HOR98]. Finally, diagrams are better representations of

knowledge because they are computational in nature and, “the indexing of information

supports useful and efficient computation processes” [HOR98].

When applied to the representation of behavior in simulations there are also

several reasons to use diagrams. The developers of the real-time object-oriented

modeling (ROOM) method believe that “graphics based representations facilitate

communication among all parties involved in system development” [SEL94]. For

example, state machines are traditionally represented as graphs since insight is provided

faster through the graphical representation then the corresponding textual or tabular

representation [SEL94].

However, diagrams are not perfect. Every type of diagram has its own syntax and

semantics which the user must learn before they can understand it. The more

20

complicated the syntax and semantics the bigger the learning curve is, and the larger the

room for errors. Furthermore, often several diagrams may be needed to accurately

represent all aspects of what is being modeled [HOR98]. The Unified Modeling

language is one example of this, as several diagrams are used to model the multiple

aspects of software systems. When several diagrams are used to model the same system,

problems with consistency among the diagrams and the relationship between the

diagrams can occur. Finally, graphical representations are impractical for capturing

detail as graphics that are overloaded with detail can become as difficult to understand as

the corresponding text [SEL94].

When developing graphical modeling tools one should also be aware of the

problems and limitations that graphical modeling can inflict on the model and modeler.

First, graphical modeling tools can force a model to “fit within a rigid framework

bounded by available icons, menus, and forms” [CRA98]. The rigid framework can limit

the versatility of the model, making it inaccurate. Furthermore, the more screens of icons

and links a model is composed of the more cumbersome it becomes to view, edit, and

document the model because the user must navigate through mazes of icons, menus,

click-buttons, data fields, and code segments [CRA98].

2.6 Syntax and Semantics of Languages

Every well-defined language, whether a visual or textual language has its own

syntax and semantics. Syntax and semantics are the components that define a language.

The UML 1.4 specification states that, “The syntax defines what constructs exist in the

language and how the constructs are built up in terms of other constructs ” [OMG01].

21

The notation independent definition of the syntax is the abstract syntax of the language,

while the concrete syntax is defined by mapping the notation onto the abstract syntax

[OMG01]. Semantics, which gives meaning to the constructs, can be broken up into

static and dynamic semantics. Static semantics describe how instances of constructs

should be connected together to be meaningful, while dynamic semantics determine the

meaning of a well-formed construct. The semantics of a language is given by a mapping

from the syntax domain, to a semantics domain [CLA99].

2.7 Unified Modeling Language

The Unified Modeling Language (UML) is one example of a visual modeling

language. Over the past decade the Unified Modeling Language has become the standard

modeling language for modeling software systems. UML allows users, through twelve

different types of diagrams, to model the static application structure of a system, the

different aspects of dynamic behavior of a system, and the structure and organization of

the application models [OMG02]. The different types of diagrams can be broken down

into the following categories [OMG02]:

Structural Diagrams: Class Diagram, Object Diagram, Component Diagram,

and Deployment Diagram.

Behavior Diagrams: Use Case Diagram, Sequence Diagram, Activity graph,

Collaboration Diagram, and Statechart Diagram.

Model Management Diagrams: Packages, Subsystems, and Models

The diagrams are based on the concept of an object. An object is a “thing” that

can be interacted with. The state of an object represents all the data an object stores and

22

is represented through the attributes of an object. An object also has behavior which is

the way an object acts and reacts in terms of state changing and message passing. Finally

every object has an identity, which identifies an object independent of the values of the

object’s attributes.

In UML, objects belong to classes, which describe a set of objects “with an

equivalent role or roles in a system” [OMG2]. Objects belonging to the same class share

the same set of attributes (the values of the attributes can be different) and behaviors.

Classes are related to each other by using associations. Through associations multiplicity

(how many objects of class A is class B related to), aggregation (a contains relationship),

generalization (class B inherits all the properties of class A) and specialization can be

shown [OMG02].

UML is not limited to software systems, but can also be applied to many other

applications including real-time systems and business applications. With increased use

of UML and the application of UML to areas outside of software systems, UML faces

several challenges. Some of the major challenges revolve around the size and

complexity of UML, while other challenges focus on the limitations and ambiguity of

UML.

2.7.1 UML Extensions

An important part of the specification of UML is the understanding that it cannot

possibly meet every user’s need. Therefore, the specification of UML includes extension

mechanisms that allow UML to be adapted to meet specific needs of a domain. As the

visual language being developed for composable simulation scenarios is designed to be

23

applied to multiple simulations it faces many of the same problems as UML regarding

complexity and ambiguity. Therefore, the ability of the language to be extended should

be looked at, and the extensions that UML defines serve as an excellent basis for defining

the extensions.

The Extension Mechanisms package in UML allows for UML model elements to

be customized or extended. Extensions can be grouped together for a specific purpose to

form a profile. Through the Extension Mechanisms package users can extend UML by

creating new kinds of modeling elements and attaching free-form information to defined

modeling elements.

The Extension Mechanisms package is made up of profiles, stereotypes, tag

definitions, and constraints. The UML 1.4 specification defines profiles as “a stereotyped

package that contains model elements that have been customized for a specific domain or

purpose by extending the metamodel using stereotypes, tagged definitions, and

constraints” [OMG01]. Profiles may also specify the model libraries it is dependent on

and the metamodel subset it extends. Typical profiles consist of a list of new stereotypes,

with a definition for the stereotype and graphical notation (if graphical notation has been

added) [FLO02].

A stereotype is defined as “a model element that defines additional values,

additional constraints, and optionally a new graphical representation” [OMG02]. When a

stereotype is applied to a model element, the values and constraints of the stereotype are

added to the attributes, associations, and superclasses that the element has in the standard

UML. A definition for a stereotype may be informal, described via text, more formal

24

Figure 2. UML Stereotype [FLO02]

with a UML graphic, or have tabular notation. Figure 2 is an example of a stereotype for

a database entity, defined through a UML graphic.

Stereotypes can be represented by the default practice of keywords or have a

graphical notation. However, graphical notations should be added sparingly, because it is

difficult to design new notation that is both consistent with the old notation and

mnemonic [FLO02].

Tag definitions are used to “specify new kinds of properties that may be attached

to model elements” [OMG01]. Tagged values, which may be simple data types or a

reference to other model elements, are used to specify the actual properties of individual

model elements. Constraints are used to refine semantics of model elements. When

constraints are applied to a stereotype, all elements branded by the stereotype must obey

the constraints.

25

 Profiles offer several benefits to users of UML. First, they allow groups of people

to define extensions for their purposes without having to go through the UML standards

process. Second, because the profiles do not need to go through the UML standards

process they are not added into the already large and complex specification [FLO02].

Profiles also refine UML for specific domains, reducing the complexity of UML for users

and allowing for complete semantics to be defined for specific domains.

 Another way that UML can be extended is to create new metaclasses and other

meta constructs. The OMG Meta Object Facility (MOF) allows in principle any

metamodel to be defined. By using tools and repositories that support the MOF, users

can create new meta models based on UML. These models differ from profiles in that

the restrictions placed on UML profiles to ensure that the profiles are “purely additive”

do not apply to metamodels [OMG01].

2.7.2 UML and Simulation

The application of UML to simulation and simulation scenarios is not new and

several studies on how UML can be applied to composable simulations have been

conducted. One study conducted by Richte and Lothar proposes that through UML “a

description of the requirements and performance features of the simulation model

regarding its structure and dynamics” can be obtained by using different types of UML

diagrams [RIC00]. The study indicates that there are several benefits to applying UML

and the unified process to simulations. These benefits include [RIC00]:

1. Establishing a general standard for modeling and documentation of simulation
models.

26

2. Independence from the used simulation software, i.e., the way the model is
encoded.

3. Definition of a methodology for developing simulation models through the
use of object-oriented modeling and documentation.

4. Visualization of concepts, structures and dynamics of a simulation model
through UML.

5. Identification of reusable components in simulation models.

6. Building a framework for project management for simulation studies.

Another study by Stytz and Banks applies UML to the building of HLA

simulations [STY01]. In the study UML was applied to simulations in order to reduce

the difficulty of development, use, and re-use of simulation models. By using UML to

visually represent the federation and federates, Stytz and Banks believe users will be able

to comprehend the operations, objects, and parameters used in the simulation without

having to be fluent in HLA. They also believe that the improved documentation will help

with the validation of the federation. Stytz and Banks concluded that by having a

standardized set of UML documentation the following objectives can be achieved:

1. Enable better management of the federation simulation environment process
and improve the description of all a federate’s or federation’s capabilities and
requirements. Improve the capability to exploit advances made in simulation-
related technologies

2. Help describe the system to non-technical users

3. Give the simulation improved capability to document a federation’s
functionality

The methodology described in [STY01] approaches the use of UML in the HLA

architecture by using UML to design the federation simulation environment by

documenting with UML all the behaviors and properties that the environment must

possess. Then, from the UML documentation, the four Federation Object Model (FOM)

27

tables which are required for HLA simulations are created and used in an iterative

process to refine the UML based design. A FOM in HLA “describes the set of objects,

attributes, and interactions which are shared across a federation” [DAH98].

The process of generating the FOM tables from UML diagrams consists of three

main steps: the determination of the use cases, the determination of the static model of

the simulation, and the determination of the dynamic behavior of the system. How the

federates and federations are used are documented through use cases, while class

diagrams and object diagrams document the major components in the simulation, their

static attributes, and relationship between each other. The behavior, or dynamic

modeling, of the system is done through sequence and collaboration diagrams [STY01].

Figure 3 shows the order of the diagrams and how they are related to the four FOM

tables.

Stytz and Banks also concluded that several other areas of FOM development can

be improved or helped by the application of UML in the above manner. These areas

include:

1. The documentation of the expected behaviors and characteristics of computer-
generated actors

2. The required performance of the network that supports the federation

3. The development of documentation to address network latency, bandwidth
and the real-time requirements the data must be transmitted across the
network

4. Determining the virtual circuits that should be established to obtain the
desired quality of service

5. Documentation of the required levels of detail

6. Standardization of common notations

28

Figure 3. Mapping of UML Diagrams to FOM Tables [STY01]

Despite these benefits, UML currently is not completely suited to model simulations

or simulation scenarios. One suggestions made for future research in [STY01] is that

research should be done to develop “HLA specific extensions to UML that will support a

more formalized and standardized description of the timing-related performance,

accuracy, dead-reckoning, and other open federation and federate design and

documentation issues.”

2.7.3 Differences Between Software and Simulations

Although software systems and simulation scenarios share many of the same

similarities there are several key differences. First, in the design of software systems, the

focus is on the relationship between the classes in the system, not on actual instances of

classes. In the UML there are several diagrams designed to show the relationship

29

between different classes, yet very few diagrams focusing on actual instances of the

classes in the system. However in a scenario, the focus is on the relationship, value, and

behavior of the entities in the simulation, which are much more similar to objects

(instances of a class) then to classes. For example in a scenario there may only be three

types of entities (types of entities would be equivalent to a class), yet there may be a

hundred instances of each type of entity in the scenario. Furthermore, when building a

scenario the value and behavior of each of the entities in the scenario is important.

Second, in software systems, all instances of a class contain the same behavior

definition. It is the attributes of the instance combined with the behavior definition that

determine how the instance reacts to a function call. However, in certain simulation

scenarios, the builder of a scenario can assign different instances of the same type of

entity different sequences of behaviors, in the same simulation.

Third, the behavior of classes described in UML is different from the behavior of

entities defined by the user in simulation scenarios. In software engineering the behavior

specification of an object is focused on the different states an object can be in and how a

state transitions from one state to the next. In simulation scenarios the behavior assigned

to an entity by the user is a sequence of activities, the conditions between the activities,

and the parameters of the activity. Although the types of entities in simulation scenarios

have defined behavior similar to classes, the behavior is complex and hard-coded by

software engineers and subject matter experts. The focus of the scenario is to define what

activities the entity performs and the sequence they are performed in, not so much what

activities they can perform.

30

Finally, when talking about scenarios of mission-level simulation the active

elements in the scenario follow a standard hierarchy. Typically every entity is in a chain

of command. In software engineering there are multiple different types of system

architectures a system can have.

One can also apply a hierarchy to components. Although this hierarchy can be

applied to some software systems, a hierarchical architecture is not a general property of

software. The hierarchy exists in that a complex component can be seen as a parent to

the components that are put together to make the complex component. Each of these

components can potentially be parents to other components. For example, component A

might be composed of component B and component C. Component C is then composed

of component D and component E. Component D is a simple component, but component

E is composed of components F and G.

2.7.4 Why UML is not Ideal for Composable Simulations

At the Composable Modeling and Simulation Workshop it was identified that a

language was needed to serve as an architectural-level description language for

composable simulations. One of the languages considered was UML. A group

examining the issue found that:

UML is the defacto standard for capturing software requirements and static design.
UML is well integrated, mature on visual presentation. UML has important
ambiguities in the relationships in the differing views. These ambiguities are worked
around by manual transformation and informal communications in current use. The
composable components approach can founder on these ambiguities [DMS02c].

In light of the above statement the group went on to evaluate UML as the standard

of choice for describing the architecture of composable simulations. The consensus of

31

the group was the UML in its current state was not a complete solution for the following

reasons [DMS02c]:

1. UML is the de facto standard for software design. However, languages are
required at several levels: programming, design, architecture, and semantic
meaning. UML is not a complete solution to the entire problem.

2. UML is mature in its visual representations, but is very immature and poorly
defined in terms of the semantics of relationships between views (class,
interaction, sequence, etc.). Question to be asked: What is the semantic
relationship between the diagrams?

3. Works well as a standard for communicating designs among a group. Does
not work well at abstraction levels above design.

4. Does the monopoly of UML inhibit other tools/languages from gaining
acceptance?

5. UML has numerous limitations/ambiguities. These limitations may not affect
many applications developed under it, but component-based simulation tends
to magnify these deficiencies.

6. Other issues:

a. Poor ability to aggregate low-level software designs into components,
or to aggregate components into higher-level components.

b. UML tends to focus on objects, but components are typically
composed of numerous objects, or may have been developed using
structured programming approaches.

c. Temporal description aspects of UML are lacking

2.8 Representing Behavior

Representing behaviors is not a new problem, and there are several different

behavior specification techniques. The following section gives an overview of some of

the models currently being used, or models that have been applied to software

engineering and simulations in the past.

32

2.8.1 Object-Oriented Software Behavior Specification Methods and Techniques

Behavior specification techniques are those that “can be used to show how

functions of a system or of its components are ordered in time” [WIE98]. Several

different graphical models have been used in software engineering and simulation to

specify the behavior of the objects/entities in systems. These models include: process

graphs, Jackson Structured Programming process structure diagrams, finite state

transition diagrams, extended finite state transition diagrams, Mealy machines, state

charts, process dependency diagrams, ROOMCharts, activity graphs, activity cycle

diagrams, Petri nets, hierarchical finite state machines, and logic diagrams.

In these diagrams, states are represented by labeled nodes and transitions by

directed edges. The labels on the edges indicate the events that trigger the transition, the

actions generated by output, and potentially the actions performed on local variables.

Figure 4. Schema for the Heat Cooking Tank Use Case [WIE98].

33

Figure 4 gives the schema for the Heat Cooking Tank use case that will be represented by

each of the discussed models. The schema and diagrams used to discuss the diagrams are

published in [WIE98].

2.8.2 Process Graphs

Process graphs are directed graphs with labeled edges. The nodes of the process

graph represent states while the edges represent state transitions. There may be infinitely

many nodes, and from each node infinitely many edges in a process graph. Process

algebra and dynamic logic use process graphs as interpretation structures for formal

specification. Figure 5 gives an example of a process graph for the schema presented in

Figure 4.

2.8.3 Process Structure Diagrams

 Process Structure diagrams (PSD) use a tree diagram to visually represent a

regular expression. Leaf nodes in the tree represent atomic actions, while interior nodes

represent non-atomic processes. Sequences are represented by a left to right ordering of

the nodes. Nodes labeled with a ○ indicate an alternative, while an * in the box

represents iteration. Jackson Structured Programming uses PSDs to represent the

Figure 5. A Process Graph [WIE98]

34

Figure 6. A Process Structure Diagram [WIE98].

lifecycle of entities and specify functions of the system. Figure 6 gives an example of the

PSD for the schema in Figure 4.

2.8.4 Finite State Transition Diagrams

Finite State Transition Diagrams (FSTD) are directed graphs with a finite number of

labeled nodes and edges. As in a process graph, the edges represent transitions while the

nodes represent states. Ideally, because a FSTD contains a finite number of edges

Figure 7. A Finite State Ttransition Diagram with Labeled States [WIE98]

35

and nodes that can be drawn on a finite piece of paper, as opposed to regular state

transition diagrams which can have an infinite number of nodes and edges. Figure 7

gives an example of a FSTD for Figure 5.

2.8.5 Extended Finite State Transition Diagrams

Extended finite state transition diagrams increase the number of states the system

can be in by containing variables that can be tested and updated by the finite state

machine. The state of the system (the global state) is represented by the state of the

nodes (the explicit state) combined with the value of the variables (the extended state).

The variables can be local or external variables. Local variables are declared with the

specification of the FSTD. The scope of the variables can be the entire STD, a transition,

or a state. External variables are declared outside of the STD and are accessed through

special operations. With the addition of variables the specification of state changes can

be refined in the following ways [WIE98]:

1. The value of the variable might be changed by a state transition

2. A guard may be added to each transition specifying when the transition can
occur.

3. Tests to determine what the next state will be can be added to the state
machine. These tests can be used to eliminate non-determinism.

2.8.6 Mealy Machines/Mealy STD

State machines interact with their environment through input events

(communications from the environment to the state machine) and output actions

(communications from the state machine to the environment). Inputs events are

36

associated with a transition and trigger the associated transition provided that a transition

guard does not block the transition.

Output actions in Mealy machines are associated with transitions. The input

events and output actions of a transition are separated by a horizontal line, while guards

are placed in brackets following the events. Figure 8 is an example of a Mealy STD.

Mealy machines also contain decision states, which are states where data from the

external system is requested and then used to determine the next state of the system.

2.8.7 Moore Machines

Moore Machines are similar to Mealy machines except that outputs are associated

with states instead of transitions. Therefore, actions are performed upon entry of the state

and generally all transitions entering a state will generate the same output. The Shaer-

Mellor method uses Moore machines for behavior specification. Figure 9 is an example

of a diagram of a Moore machine.

2.8.8 State Charts

State charts are hi-graphs with Cartesian products, but no intersections. The

nodes represent states and the directed hyper edges represent the state transitions. A state

Figure 8. STD of a Mealy Machine [WIE98].

37

Figure 9. STD of a Moore Machine with a Decision State [WIE98]

can be partitioned into sub states through node inclusion, and parallelism is allowed

through Cartesian products. Furthermore, state charts use local variables to represent an

extended state and allow for actions to be specified along transitions, upon entry into

states, and upon the exit from states. In the case that parallel composition is used, an

action generated by a state transition is broadcast to all of the parallel components in the

same state chart. Some models, such as Statemate have defined special events, actions,

and conditions that can be used in state charts. Formal semantics of state charts have

been defined by Herl et. al. and Pnueli and Shalev. Figure 10 shows a state chart of the

process defined in Figure 4.

2.8.9 Process Dependency Diagrams

Process dependency diagrams are directed hypergraphs with nodes representing ongoing

activities (processes) and the edges representing the transitions between the activities.

Information engineering uses process dependency diagrams to represent precedence

38

Figure 10. A State Chart [WIE98]

relations between activities. Process dependency diagrams contain conventions for

parallel execution, alternative execution of processes, and cardinality properties of

precedence relationships. They can also represent triggering events. Process dependency

diagrams are similar to dataflow diagrams, except in a process dependency diagram the

transitions represent a logical precedence and not a dataflow. Figure 11 gives an example

of a process dependency diagram.

The Martin-Odell method and UML both use conventions related to the

conventions in process dependency diagrams. The Martin-Odell method uses event

diagrams, which are like process dependency diagrams without explicit representation of

cardinality and event arrows, for behavior specification. The exact nature of the

dependencies is depicted by control conditions. UML contains activity graphs which are

similar to process dependency diagrams without events or cardinalities. They are defined

39

Figure 11. A Simple Process Dependency Diagram [WIE98].

as state charts where the states represent activities and the transitions are triggered when

an activity is terminated.

2.8.10 ROOMCharts

The real-time object-oriented modeling (ROOM) method is used to model real-

time systems. The idea behind ROOM is to break real time systems into a “hierarchical

collection of components called actors” [SEL94]. An actor in a ROOM model is “a

logical component of a system that can be active concurrently to the other actors in the

system” [SEL94]. In ROOM actors must have a defined purpose, and an actor can be a

software object with its own thread of control or a physical component that can behave

independently of other objects. The behavior of actors in the system is represented by

ROOMCharts.

A ROOMChart is a graphical representation of an extended state machine based

on the state formalism of David Harel. The diagram consists of states represented by

rounded rectangles and transitions represented by arrows. A state in a ROOMChart

represents “a period of time during which an actor is exhibiting a particular kind of

behavior” [SEL94]. The transitions in a ROOMChart are triggered by the arrival of

messages (through the defined interface of the actor). Every transition must have a

40

trigger and the trigger may contain an optional guard function. The guard function must

evaluate to true or false, and the guard function must be true in order for the transition to

be taken. Transitions can be given a label and be defined separately from the

ROOMChart. The activities performed by the actor are defined by attaching actions to

states or transactions. Actions, or tasks for the actor to perform, can be attached to

transactions or to states as entry or exit actions. These actions are indicated in the form

of statements written in executable instructions. Figure 12 is an example of a

ROOMChart.

2.8.11 UML Activity Graphs

In UML, state machines are used to “specify behavior of various elements that are

being modeled,” and provide a foundation for activity graphs [OMG01]. An activity

graph is an extension of a state machine and is used to “model processes involving one or

more classifiers” [OMG01]. Classifiers are defined as, “A mechanism that describes

behavioral and structural features. Classifiers include interfaces, classes, datatypes, and

components” [OMG01]. Activity graphs focus on the sequence of and conditions

Figure 12. A Simplified ROOMChart for a Dyeing Run Controller [SEL94]

41

between actions in a process, instead of which classifiers are responsible for performing

the actions.

In an activity graph the states are action states that invoke actions and then wait

for their completion. The events that can trigger entrance into an action state are:

1. The completion of a previous action state

2. The availability of an object in a certain state

3. The occurrence of a signal

4. The satisfaction of some condition

The major components of an activity graph as described in [FLO99] are as

follows:

Activity State: “A state of doing something: either a real-world process, such as

typing a letter, or the execution of a software routine, such as a method on a class”

[FLO99]. An activity state can be decomposed into sub activities.

Transitions: A transition is a movement from one activity state to the next. It is

made up of an event, condition and actions (Although none are required). If no event is

included in the transition it is implied that once the activity the transition starts from is

finished the transition is triggered. If a transition has a condition placed on it, the

condition must evaluate to true in order to allow for the transition to take place. An

action is a process that occurs quickly and cannot be interrupted.

Branch: A branch is used to indicate that one of several transitions can be taken.

It has one input transition and several output transitions. Every output transition must

have a guard.

42

Merge: A merge has several input transitions and on outgoing transitions and is

used to indicate the end of conditional behavior started by a branch.

Forks: A fork has one incoming transition and several outgoing transitions. All

of the outgoing transitions are taken in parallel when the incoming transition is triggered.

The parallel notation indicates that the order of the activities does not matter, and that the

activities may be interleaved.

Joins: A join indicates the end of the parallel activities and is taken after all the

incoming transitions have been triggered.

According to Flower, activity graphs are a good tool for workflow modeling and

are also useful in understanding how processes work and dealing with multithreaded

applications [FLO99]. However, he also notes that they do not make links among actions

and objects very clear. Figure 13 illustrates the different components of an activity

graph.

2.8.12 EZStrobe/Activity Cycle Diagrams

EZStrobe is a general-purpose simulation system used in the design of

construction operations, but is domain-independent. The simulation is based upon

activity cycle diagrams and uses the three phase activity scanning paradigm. Although

activity cycle diagrams are used in other construction simulations, it is the goal of

EZStrobe to be a “very easy to learn and simple tool capable of modeling moderately

complex problems with little effort” [MAR01].

43

Figure 13. Activity graph [FLO99]

In building the activity-scanning model, the modeler focuses on identifying which

activities take place or can take place in a process, what conditions are needed to start

each activity, and the outcome of the activity. An activity cycle diagram (ACD) is a

graphical representation of the activity-scanning model and consists of a network of

circles and squares. In an ACD rectangles represent activities, circles represent queues,

44

and the links between them represent the flow of resources. Figure 14 gives an example

of a simple ACD [MAR01].

Queues in an ACD represent idle resources. Resources are placed in the queue by

terminating activities preceding the queue and removed by conditional activities

following the queue. A conditional activity is an activity that can start whenever the

queues preceding the activity have enough resources, while bound activities are activities

that are able to start upon the completion of the proceeding activity. Forks are

probabilistic routing elements that are used to determine which path is taken when a

number of paths are available [MAR01].

There are three types of links that are used to link queues and activities in ACDs.

Draw links are used to connect a queue to a conditional activity and show how much of

the resource is required in order for the activity to start and how much of the resource is

used by the activity. Release links connect activities to queues or a bound activity or fork

Figure 14. An ACD Diagram for an earth moving operation [MAR01]

45

and indicate how much of a resource is released by each iteration of the activity. Finally,

branch links connect a fork to a queue, another fork, or bound activity and contain the

probability that the link will be taken [MAR01].

2.8.13 OPNET

Optimized Network Engineering Tool (OPNET) is a discrete event simulation

package used to model networks and is built for the specification, simulation, and

performance analysis of communication networks. One of the key features in OPNET is

that it facilitates hierarchical model building, allowing for each level of the hierarchy to

model a different aspect of the simulation. One such level of the hierarchy used in

OPNET is the process model [CHA99].

 The process model in OPNET is used to specify the logic flow and behavior of

the node models used in the network. Proto-C, which is made up of state transition

diagrams, a library of kernel procedures, and the standard C programming language, is

used to represent the process models. In order to specify “any type of protocol, resource,

application, algorithm, or queuing policy” a state transition diagram approach is used

[CHA99]. The states and transitions of a STD are used to define actions of a process in

response to certain events, while general logic is specified using the predefined library

functions and C code inside the states. The processes also have the ability to create new

processes in order to perform subtasks [CHA99]. Figure 15 shows an example of a state

transition diagram used in OPNET.

46

Figure 15. A State Transition Diagram Used in OPNET

2.8.14 Petri nets

 As defined by Zimmerman, “a Petri net is a graphical and mathematical modeling

tool,” consisting of places and transitions [ZIM02]. Places, which are similar to states,

are connected to transitions via input arcs, and transitions are connected to places via

output arcs. Each place can contain tokens, and the current state of the system is given

by the number of tokens (or number of each type of token) that are at each place.

 In a Petri net the transitions represent the active part of the diagram and model the

activities that can occur in the system. Transitions fire when all their pre-conditions are

met, distributing some or all of the tokens in the input places to all of the output places

[ZIM02]. Pre-conditions are represented through the number of tokens required in each

input place before a transition can fire. Petri nets can be expanded as additional types of

arcs can be added to petri nets, and “transitions can be equipped with durations, time

47

intervals, or with stochastic time distributions ” [DES00]. Figure 16 shows an example

of a Petri net.

Petri nets are often used to represent the behavior of dynamic systems that have

multiple objects and events, because Petri nets take into account the dynamic behavior of

a system. Furthermore, Petri nets are benefical because they “provide a graphical

formalism” and are more precise and formal then data flow diagrams [ALL00].

Jörg Desel recommends using Petri nets for the modeling and simulation of dynamic

systems, since “Petri nets provide graphical means for specifying models that support an

easy understanding” [DES00]. Furthermore, Petri nets are a desirable model because

they have, “a solid mathematical basis and there exists a rich theory on their

semantics, their analysis, their simulation and their application in numerous

domains" [DES00].

Despite the benefits that Petri nets offer they are not the ideal choice for

representing the behavior of individual elements in the system. Petri nets are designed to

show the behavior of a system as a whole, and not the states that one component goes

through. Furthermore Petri nets can be difficult to understand as it is not always clearly

marked how many or what type of tokens are needed for each transition.

Figure 16. An Example of a Petri net [ZIM02]

48

2.8.15 Hierarchical Finite State Machines

Nested or hierarchical finite state machines are used in the National Air and Space

[Warfare] Model (NASM) to extend composability to behaviors. In NASM, a finite

machine framework allows for predicates and actions to be converted into a finite state

machine to drive aircrafts decisions in the simulation [PUC00].

A data structure containing a list of states and a pointer to the current state is used

to represent a FSM. Each state in the data structure contains a list of predicates, actions,

and next states. Predicates are tests that always evaluate to true or false. Actions are

activities that are to be performed when a predicate evaluates to true, and the list of next

states provides the next state that will occur after a predicate evaluates to true. Each state

also contains a process which could be another FSM machine or null [PUC00].

A state machine to determine the flying route of a plane, shown in Figure 17, serves as an

example of a simple state machine describing behavior. Predicates test to see if the plane

is at a certain point. When the predicate evaluates to true, a GoTo action computes the

direction the plane needs to fly to get to the next desired location. Because of the

hierarchical nature of the FSM, it would then be possible to divert from and later return to

the route at the place where the route was left, without returning to the beginning of the

route [PUC00].

The prototype, which was extended to explore the use of composable components

in the construction of behaviors, found that there were several benefits to using finite

state machines to represent behavior. The first benefit is having the ability to create FSM

at runtime, which allows for re-tasking, and for the development of a crude GUI for the

design of behavior. The GUI for behavior design is then able to generate text files for the

49

behavior generation. Furthermore, text files were able to be generated from the diagrams,

because the predicates and actions define a language with basic elements composed on a

simple set of rules [PUC00].

However, the authors neglected to discuss the GUI, and did not state if there ever

existed a graphical representation of the state machines created for each behavior, or if

the state machines made the behaviors easier to understand. Furthermore, although the

article stated complex behaviors could be created from the finite state machines, it did not

give a complex example or discuss what happens to the finite state machines as the

complexity of possible inputs grows. Additionally, temporal issues such as duration and

receiving a message were not addressed.

[At A]/GoTo B

[At B]/GoTo C

[At C]/GoTo D

[NotAt A]/GoTo A

[NotAt B]/GoTo B

[NotAt C]/GoTo C

[NotAt D]/GoTo D

State Process
[Predicate]/Action
A process is NULL if it is listed

A

B

C

D

A

B

C

D

Aircraft Flies Route1

States to Fly Route 1

Figure 17. Diagram of a Fly Route Hierarchical State Diagram

50

2.8.16 Logic diagrams and User Composable Behaviors

Logic diagrams were used in the Composable Behavior Technologies (CBT)

project to allow realistic tactical behaviors to be “easily composed from a set of primitive

behaviors” and to allow the end user to create new behaviors that meet her simulation or

scenario requirements [COU97]. The purpose of the CBT project is to explore possible

methods that would allow users of a Semi-Automated Force simulation system “to create

customized behaviors for the simulated entities” [COU97]. In order to allow for the

behaviors to be easily composed, a GUI allowing users to build logic diagrams was

implemented for the CBT project. The behavior editor allows for the sequencing of

primitive behaviors in order to provide the user with a more understandable means for

representing behavior then other existing methods such as state diagrams. Table 1 lists

the available behavior nodes used in the logic diagrams for the CBT project.

In order to allow for temporal conditions that would impact the behavior defined

to be included in the diagrams, the temporal conditions listed in Table 2 are implemented.

Different connectors are defined to represent each of the conditions. Figure 18 gives an

example of a logic diagram used in the CBT project.

The behaviors defined in the editor are converted into a behavior representation

grammar, which contains instructions for the execution of the behaviors. The grammar

allows for the hierarchical specification of composite behaviors, the sequence

specification of behaviors, and the parameters of these behaviors [COU97].

The study described in [COU97] found several benefits in the use of composable

behaviors and logic diagrams. These benefits include the easy representation of

51

Table 1. Available Behavior Nodes for the Behavior Editor in CBT[VON99]

Behavior
Palette Nodes

Description

Begin/Complete All behaviors must have one Begin and one Complete node. These nodes are
represented textually.

This node represents a primitive behavior. Primitive behaviors are the
very basic action that an entity can perform. The primitive behaviors that a user
may select are based on the current pane’s domain type and echelon level

This node represents conditional behaviors, which are those behaviors
that determine the next path based on the results of the condition. The predicate
behaviors available to the user are determined by the current pane’s domain type
and echelon level.

This node represents the user-developed complex behaviors. The
behaviors available are determined by the currently selected pane’s domain type
and echelon level.

 This node represents the available communication behaviors for the
currently selected pane’s domain type and echelon level. This node is comprised
of the six different types of communication behaviors. Below each of the types
of communications are the actual behaviors that the user may select. The node
displays both the type and the behavior name.

hierarchical behaviors that occur concurrently across multiple levels of a military

organization and the support of semi-automated behaviors with an explicit representation

of user inputs.

2.9 TreeMaps

Treemaps are an interactive visualization method for presenting hierarchical

information. Designed by Ben Shneiderman and Brian Johnson, they are described in,

Treemaps: a space-filling approach to the visualization of hierarchical information

structures [JOH91].

Table 2. Implemented Temporal Constraints in CBT [VON99]

Temporal
Condition Description Proposed

P

Comp

P

52

<NULL> Start execution of behavior as soon as
possible. Sequence will be the default condition type.

Sequence

Start Of Other At the start of another behavior, this
constraint will be met and processing will continue.
The user selects the other behavior, which is
contained within the same composite behavior
window.

Start-of-other
<behavior>

End Of Other At the end of another behavior, this
constraint will be met and processing will continue.
The user selects the other behavior, which is
contained within the same composite behavior
window.

End-of-other
<behavior>

Delay After Other
Starts

At a user-specified time after the start of
another behavior, the constraint is met and
processing will continue. The user selects the
behavior and also sets the time.

On-time <time>

Delay After Other Ends At a user-specified time after another
behavior completes execution, the constraint is met
and processing will continue. The user selects the
behavior and also sets the time.

On-time <time>

On Communication This constraint is satisfied when a
Communication is signaled.

On-order

Figure 18. An Example of a Logic Diagram [VON99]

53

2.9.1 Basic Concept of Treemaps

 Traditional, static methods of displaying hierarchies typically make poor use of

display space or hide information from users. Treemaps on the other hand utilize 100%

of the screen space and allow for information about the hierarchy such as size or force

capability, typically hidden from the user, to be displayed. Information about the

hierarchy is interactively presented by allowing users to specify the presentation of

content and structure.

Treemaps work by partitioning the display space into rectangular bounding boxes

that represent the tree structure. Each unit in the hierarchy is placed in the bounding box

representing its parent. The higher the importance of the box, the more display space it is

allocated. The importance of the bounding boxes are determined by the weight of the

nodes inside of the box, while the drawing of the nodes inside the bounding box is

determined by the content of the individual nodes. The content of the box determines the

weight or importance of the box and can be interactively controlled. Other properties that

the user can have control over include colors, borders, etc. Figure 19 shows an example

of a treemap used to represent a file structure [JOH91].

2.9.2 Rules for creating a Treemap

The relationship between the structure of the hierarchy and the structure of the

treemap drawing as given by Shneiderman and Johnson [JOH91] is as follows:

1. If Node 1 is an ancestor of Node 2, then the bounding box of Node 1
completely encloses, or is equal to, the bounding box of Node2

2. The bounding boxes of two nodes intersect if one node is an ancestor of the
other

54

3. Nodes occupy a display area strictly proportional to their weight

4. The weight of a node is greater than or equal to the sum of the weights of its
children

The content of the node can be displayed through visual display properties such as

color, texture, shape, border, and blinking. Of these display properties, color is the most

important and it can be an important aid to quick and accurate decision making.

2.9.3 Potential of Treemaps for representation of simulation scenarios

As the organization of units and entities in military is a hierarchy, there are

several potential benefits of applying treemaps to the representation of troops in

simulation scenarios. First, by using treemaps all the units and entities in the battlefield

can be displayed on one screen. Through the use of an interactive display the user can

Figure 19. A Treemap of a File Structure [JOH91]

55

obtain more information about specific units without having to click up and down

through large tree structures opening and closing nodes. Furthermore, in treemaps the

relative size of the forces to each other is displayed. In several traditional representations

of hierarchies each node in the diagram is given equal value regardless of the size of the

node. However, in treemaps, the nodes (or entities and units) that are bigger are allocated

more space on the screen giving a visual indication of their size relative to the other

nodes.

Second, information from the scenario that is hidden or textually displayed in

other hierarchically representations can be displayed through display properties of the

treemap. Some example properties could be the health of each unit/entity, units/entities

that have or have not been assigned missions, and the location of units/entities in the

scenario. The information displayed through the treemaps could then be used to facilitate

decision making and help in the analyzing the results of simulation scenarios.

2.10 Summary

Composable simulations offer several benefits to the field of simulation and

modeling including the potential of lower production costs, greater consistency and

validity, quicker scenario development, and greater re-use. Despite the benefits that can

be provided by composable simulations, the field has challenges to be overcome. Many

of theses challenges result from a lack of key theories in composable simulation and no

common specification of components used in composable simulations. One approach to

overcoming some of these barriers is to develop a visual language geared toward

composable simulations and simulation scenarios.

56

Visual languages and diagrams have several benefits over pure text in aiding

comprehension. The Unified Modeling Language serves as one example of a visual

language and is the standard visual language for representing software systems.

Although UML has been applied to simulation scenarios in previous studies it, is not

ideally suited to describe simulation scenarios.

There are several behavior specification techniques used in software engineering

and modeling and simulation. These methods included process graphs, finite state

diagrams, extended finite state diagrams, Mealy machines, Moore machines, state charts,

process dependency diagrams, SADT activity graphs, ROOMCharts, UML Activity

graphs, finite state machines, and logic diagrams.

57

III. Methodology

3.1 Introduction

 Composable simulations potentially offer multiple benefits to the field of

simulation and modeling. However, there are many obstacles that composable

simulations need to overcome, including a standard specification for simulation

scenarios. One solution to this problem is the use of a visual language to represent

different aspects of simulation scenarios. This thesis looks at the development of a visual

language to represent the high-level behavior of, and hierarchical relationship between,

entities in simulation scenarios.

This chapter gives an overview of the methodology used in the research presented

in this thesis. First, a background of the problem is presented. Then the objectives of the

visual language for simulation scenarios are discussed, followed by the identification of

properties of composable simulations that need to be included in a visual representation

of the scenarios. Finally the principles of visual languages are discussed and the

evaluation criteria used are stated.

3.2 Background

The background for the methodology implemented in this thesis comes from

several different areas. Topics discussed in the background include composable

simulations, the motivation behind the development of a visual language for simulation

scenarios, the differences between software and simulations, and the short comings of

behavior specification techniques when applied to simulation scenarios.

58

3.2.1 Composable Simulation

Composable simulation is based on the premise that the development time of

simulations will decrease and accuracy of simulations will increase if they can be created

using existing components. There are two aspects in the development of composable

simulation: the development of composable simulation environments and the

development of scenarios for them. The simulation environment specifies the

architecture of the simulation while scenarios are used to specify what should be

simulated.

Components in simulations are pieces of code that might represent a model,

algorithm, function, or group of models. Each component provides an interface by

which it can interact with the simulation system and other components in the system.

Components are also designed so they can be used as building blocks, allowing complex

components to be built from smaller components. Components can be pieces of software

used in the architecture of the simulation model or pieces of code used in the simulation

scenario. Ideally, when creating an architecture or scenario a user would be able to select

components from a repository and then manipulate them to create the desired result.

3.2.2 Motivation of Applying a Visual Language to Composable Simulations
Scenarios

In Chapter 2, several obstacles that need to be overcome in order to make

composable simulation a reality were identified. Many of the obstacles mentioned can be

related to the fact that there is currently no common descriptor in the development or

specification of components among different simulations. The high-level architecture

(HLA) is one attempt at standardization is difficult to learn and use. Furthermore, HLA

59

is used to describe simulation systems and not the scenarios used by simulation systems.

Scenarios produced by simulations are very different from the simulations themselves

and are written in a language specific to the simulation for which they were created.

One method of describing the properties, behavior, and structure of “things” in

other disciplines without dependency on the implementation of the “thing” is through the

use of diagrams. In software engineering, the Unified Modeling Language (UML) is

used to document many aspects of software systems. Similarly, there are several ways

diagrams can be applied to the representation of simulation scenarios.

In particular, diagrams can be used to represent the behavior of, and hierarchy

between, entities inside simulation scenarios. As presented by Robert Horn in his book

on visual languages [HOR98] diagrams have several advantages over plain text. First,

diagrams can help the user better comprehend the assigned behavior of components

because they “help the learner build run-able mental models” that portray “each major

state that each component can be in and the relations between a state change in one

component and the state changes in other components” [HOR98]. Furthermore, diagrams

represent the hierarchy between the entities in the simulation scenarios better than a

textual description because diagrams are more efficient at representing structure and are

better at representing complex relationships than text alone.

3.2.3 Differences Between Software and Simulation

As discussed in Chapter 2, although software systems and simulation scenarios

have similarities, there are several key differences between them. The main difference is

the focus of what is being represented. Software focuses on objects and defining what

60

properties and behaviors an object has. It also looks hat how objects are related to other

objects. Simulations, focus on actual instances of objects and what properties, behaviors,

and interactions each instance has.

3.2.4 Shortcomings of Current Visual Languages

Currently there are several different representations of behavior specification used

in software engineering and simulation. Of the different types of diagrams discussed,

Process Dependency Diagrams, which are used in information engineering to represent

precedence relations between activities, depict the type of behavior most similar to the

missions assigned to entities in simulation scenarios. Process Dependency Diagrams are

directed hypergraphs that use nodes to represent on going activities (processes) and edges

to represent the transitions between the activities. Three deviations of process

dependency diagrams used in modeling are activity graphs, ROOMCharts, and logic

diagrams [FLO99], [SEL94], [MCC00]. Activity graphs, a part of UML, are used to

“model processes involving one or more classifiers, and focus on the sequence and

actions conditions for the actions” [OMG01]. ROOMCharts, found in real-time object-

oriented modeling (ROOM), are graphical representations of extended state machines and

are used to represent the high-level behavior of entities in real time systems. Finally,

logic diagrams used by Composable Behavior Technologies allow users to create

complex behaviors from a defined set of primitive behaviors. Chapter 2 gives a

description of each type of diagram.

Although the above diagrams sufficiently represent the information they were

designed for, each of the diagrams has shortcomings when applied to the modeling of the

61

sequence of activities assigned to entities in simulation scenarios. The following section

discusses the properties a language for the representation of high-level behavior of

simulation scenarios needs to contain. Then, a discussion of the specific advantages and

disadvantages of each of the diagrams when applied to the problem domain is presented.

3.3 Behavior Properties of Entities in High-level Simulation Behavior:

In order to accurately represent the behavior of entities in mission-level

simulation scenarios the behavior specification method used needs to be able to represent

and support certain properties. These properties include reactions, parameters, temporal

conditions, composability, focus on the activities, and a high-level of abstraction.

Reactions: In simulations there are behaviors that are not planned. Instead they

occur as reactions to other events in the simulations scenario. For example, in a scenario

a plane might be given an ingress command, but upon detecting an enemy plane divert

from the ingress and go into an attack activity. There should be a way to indicate that

this event is a reaction and not part of the assigned activities.

Parameters: As the activities assigned to the entities represent behavior models

that accept parameters, the specification used needs to be able to represent the values that

the user entered into the model. Example parameters might be a location, maximum

speed, or formation type.

Temporal Conditions: Temporal conditions are used in the behavior

specification of entities in simulations and therefore the behavior specification technique

used should be able to accurately represent temporal conditions.

62

Composability: In order to reduce the complexity of behaviors in simulations the

user should be given the ability to compose the behaviors into high-level behaviors.

Focus on Activities not on Transitions: The diagram should represent the

activities that the entity performs and not the actual state of the entity. Furthermore the

transitions in the diagram should not represent data flow as the purpose of the

specification is to show the changes in activities that the entity is performing and not

mutations of data. Furthermore, as the purpose of the diagrams are to show the activities

the entity performs the transitions should only serve to represent the precedence of one

activity in relation to another and any condition that must be met before the transition can

take place.

Higher Level of Abstraction: The user is not concerned with how the behavior is

implemented, but instead they care about the high-level description of the behavior

assigned to entities and the parameters that they can modify. Therefore the specification

should provide high-level detail without touching how the behavior itself is implemented.

3.4 Drawbacks of the Current Behavior Specification Techniques

Although the diagrams discussed in Chapter 2 adequately represent the data they

were designed to represent, each of the diagrams has both advantages and disadvantages

when applied to the representation of the high-level behavior of battlefield entities in

mission-level simulation scenarios. The following sections discuss some of the major

benefits and drawbacks of several of the diagrams mentioned in Chapter 2 when applied

to the representation of such behavior.

63

3.4.1 ROOMCharts

When applied to the type of behavior this thesis is looking at, ROOMCharts offer

several benefits. First, since ROOMCharts represent the high-level behavior of actors,

they relate very closely to the high-level behavior of entities in simulation scenarios. As

a result of this similarity they serve as a good starting off point for the representation of

the behavior of entities in simulation. Second, they implement the concept of transition

between the nodes as the changing of activities performed by the actor and allow for

guards to be placed on the transitions. This is the same representation of transitions that

needs to be included in the behavior specification used. Furthermore, in order to reduce

the complexity of the diagrams, the transitions can be labeled and defined separately from

the chart.

Despite the benefits of ROOMCharts they have some disadvantages when applied

to the domain. First, the transitions in ROOMCharts are triggered by the arrival of

messages to the actor and not the completion of the activity currently being executed or

the condition on the transition evaluating to true. Second, the chart includes the extra

notion of actions or tasks attached to transitions, which are not needed for the behavior

this research is trying to represent.

3.4.2 Activity Graphs

 Activity graphs offer several benefits to modeling the problem domain in that they

are used to model the activities of a process, which is very similar to the modeling of a

sequence of behaviors assigned to an entity. Furthermore, transitions are used to

64

represent the movement from one activity to the next, and are invoked by triggers or the

completion of the action in the activity state the transition starts in.

 Activity graphs, however, have disadvantages in that they model a process, rather

then the behavior of one entity. In the execution of the process several classes can be

included, but the behavior the specification required for this research is scoped down to a

single entity. Furthermore, the actions represented by the diagrams are different than

activities performed by entities in simulations in that actions are placed as entrance and

exit actions in the diagram, occur quickly, and cannot be interrupted. Activities

performed by simulation entities, however, can be lengthy and can be interrupted.

Finally, the graph allows for concurrent behavior which is not needed for the domain

being modeled. Concurrent behavior happens in activity graphs when two or more

activities are being executed at the same time in a particular process. In the high-level

behavior of entities in simulation scenario, an entity can only be performing one activity

at a time.

3.4.3 Activity Cycle Diagrams

The main benefit of activity cycle diagrams is that the nodes in the diagram

represent activities and are the focus of the diagram. However, activity cycle diagrams

are not ideal for the purpose of this thesis because they focus on the flow of resources

through a process, rather then a sequence of events. Therefore the conditions on

transitions are based around the availability of resources, rather then the completion of a

task or the evaluation of some condition to true.

65

3.4.4 OPNET

The main benefit of the state transition diagrams in OPNET is that the diagrams

are used to model the actions of a process, which is similar to the sequence of behaviors

of entities. However, OPNET relies on predefined library functions and a variation of the

C programming language in order to truly represent the behavior of the process.

Furthermore it represents the actions of a process on an entity and not necessary the

actions an entity takes. Also, the state transition diagrams used in OPNET are modeled

to have several entities flow through the same process. In the behavior this research

specifies, different entities of the same type may perform two different sets of actions.

Finally, the STDs in OPNET use events to trigger transitions, and OPNET does not

provide a way for guards to be placed on the transitions.

3.4.5 Petri Nets

Petri nets are very beneficial in simulations in that that they have a solid

mathematical basis, which aids in the accurate execution of the model. Furthermore,

when applied to the representation of behavior of entities they allow for time intervals

and durations to be placed on the transitions.

However, Petri nets are not ideal for the behavior representation needed for this

research because the transitions represent activities and the states are used to represent

the conditions for triggering the transitions. This representation is opposite of the way

most process dependency models work, making petri nets more difficult to learn for users

of other diagrams. Furthermore the triggers on transitions are represented by tokens,

which does not facilitate reading of the model. Finally, Petri nets are designed to model

66

the behavior of a system and the behavior of entities moving through the system, which is

quite different than the behavior of individual entities.

3.4.6 Hierarchical Finite State Machines

The hierarchical finite state machines used for NASM have several benefits when

applied to the problem domain. First, they allow for composition by allowing state

machines to contain other state machines. Second, they contain predicates which must

evaluate to true in order for the actions to be performed. These predicates are similar to

the conditions on the transition triggers that are needed to represent temporal conditions.

Third, the activities represented by the states in the finite state machines are similar to the

activities performed by entities in the scenarios. Finally, the rules of the finite state

machine allow text files to be generated from state machines.

Despite the benefits of hierarchical finite state machines there are some

drawbacks. First, in the applications it is being applied to, the level of detail is a lower

level of abstraction then what this research seeks to define. Second, in order for an

activity to take place a predicate must evaluate to true, which is different from the

concept of activity completion found in the problem domain. Also, different activities

are performed based on the predicate. In the problem domain, the predicates are mainly

used to signal when an activity will happen and not what activity will happen. Finally no

abstract syntax for the diagrams was given, making it hard to picture what the actual

diagrams look like.

67

3.4.7 Logic Diagrams in Composable Behavior Technologies

As with hierarchal state machines, logic diagrams offer many benefits to the

representation of high-level behavior of entities in simulation scenarios. Many of the

benefits come from the fact that logic diagrams are used to represent the sequencing of

primitive behaviors, which are very similar to the type of behaviors this research is trying

to represent. In addition to having activities and connectors between the activities, the

logic diagrams also allow the representation of user-composed behaviors and the

specification of user-defined parameters in the activities. Both of these capabilities are

required for accurate representation of the problem domain. The study that used the logic

diagrams also validated the use of the diagrams because the benefits that came from using

the logic diagrams further demonstrated the validity of using diagrams to represent

behavior.

Despite the benefits that the logic diagrams used in CBT have to offer, they also

contain drawbacks, as the behavior represented by logic diagrams in CBT is different

from the behavior being represented in this research. Instead, the logic diagram allows

users to compose primitive behaviors into more complex behaviors. The behaviors

defined by CBT are at a lower level of abstraction and require greater domain knowledge

than the behaviors defined by this research.

As a result of the differences in the behavior being represented by logic diagrams

and the behavior being researched, several disadvantages to logic diagrams arise. First,

temporal conditions are implemented through a defined set of connectors or transitions.

As a result of defining a limited number of connectors only a few temporal conditions

have been defined and can be used in CBT. Second, some of the temporal conditions

68

deal with concurrent activities, which are not allowed in the specification of a behavior of

a single entity. Third, the predicates tend to lean toward only two options, yes or no. For

the behavior being studied by this research it is necessary to allow for more then two

possible transitions to be modeled. Fourth, several different shapes are used to represent

states and behavior, which makes the diagram more difficult to read than other variations

of process dependency diagrams. Finally, some of the components in the logic diagrams

are included because they are needed for the lower level of detail not addressed by the

problem domain of this research. Therefore, they should not be included in the

developed behavior specification in order to reduce the complexity of the language.

3.5 Design Objectives for the Visual Language for Simulation Scenarios

The overall goal of the work presented in this thesis is to create a visual language

that aids in the comprehension and building of simulation scenarios. In particular, the

language is intended to aid in the development and comprehension of composable

simulation scenarios at the mission-level by allowing for easier comprehension of the

behavior of, and hierarchical relationships between, entities in the scenarios. The

language developed has the ability to be applied to multiple mission-level simulations.

By changing how the components of the language can be connected and defining

required attributes for the components, the diagrams will reflect the architecture and

limitations of the simulation environments the scenario they describe were created for.

By modeling the components of simulations and their scenarios it is the

hypothesis of this thesis that the visual language developed will increase the

understanding of the structure and behavior of the entities in simulation scenarios.

69

Furthermore, having a common language to describe the simulation scenarios serves as a

basis for a tool that could potentially allow for one scenario to be generated for multiple

simulation platforms, or the conversion of a simulation scenario from one platform into a

simulation scenario for another platform.

For the purposes of this research, the main objective has been scaled down into

two sub-objectives. The first sub-objective is the development of a visual language that

describes the assigned behavior of components acting as entities in simulation scenarios.

The second sub-objective is the application of treemaps to the hierarchy between entities

in mission-level simulation scenarios.

3.5.1 Representation of Assigned Behavior in Simulations

The scope of the first objective has been reduced to apply to the representation of

missions for entities in mission-level simulations. In mission-level simulations a mission

can be defined as a sequence of activities performed by entities in the battlefield. Entities

range from a single individual to an entire battalion. In a mission for an entity there may

be conditions between the sequence of two events and alternate courses of action invoked

by the conditions of the environment referred to as reaction tasks. By creating a visual

language to describe the sequence of behaviors, the visual language aids in the

comprehension of already completed scenarios and the in the creation of new scenarios.

3.5.2 Application of TreeMaps

The second sub-objective of the research conducted was to increase the

understanding of hierarchies in scenarios. This was completed by applying the

information visualization technique known as treemaps to the hierarchy of entities in

70

simulations scenarios. By applying treemaps to the hierarchy of entities in battlefield

simulations scenarios users of the system can look at all the entities in the battlefield in a

single space, without having to trace through long list of units or maximize/minimize

nodes of a tree. Furthermore, by customizing the properties of the treemap such as color

and the borders of the units in the hierarchy the user is given the ability to customize the

treemap to present the desired information in a way that assists user comprehension.

3.6 The Visual Language

In order to meet the objectives stated above, diagrams named Simulation

Behavior Specification Diagrams (SBSD) are specified and described in Chapter 4. Also

in Chapter 4, treemaps are adapted to accurately display the information stored in the

hierarchy of entities in simulation scenarios. When designing the visual language for the

SBSDs and in the adaptation of the treemaps several different properties of simulation

scenarios were taken into account.

3.6.1 Properties Needed By the Visual Language

Due to the domain the visual language is being applied to there are several

properties that the visual language should be able to represent. First, the visual language

must allow for the specification of attributes in the representation of activities. This

requirement is necessary as the user must be able to specify certain attributes of the

behaviors assigned to entities. Next, as temporal conditions such as duration of a task,

reaching a control point, or receiving a message from another entity can determine the

completion of one behavior and the start of another, the diagrams must allow for

constraints to be placed on transitions between two activities. Another desirable property

71

of the visual language is the ability to compose a sequence of activities into a new

activity. By allowing activities to be composed it allows for the user of the diagram to

pick the level of detail they want to view. It also saves time as the user does not have to

repeatedly assign the same sequence of activities multiple times.

Furthermore, some of the activities an entity performs in a mission-level model

are reactions to events, rather then the originally planned sequence of activities.

Therefore, the language should provide a visual indicator of what transitions are

reactions, and if the transition indicates a permanent or temporary deviation from the

original path. The language should also be capable of forward and backwards generation.

In forward and backwards generation, the scenario representation used by the simulation

can be accurately expressed by the visual language. Furthermore, the representation of

the scenario by the visual language should be able to be converted into a scenario file

used by simulations.

Finally, the language should be able to efficiently represent large groups of

entities, information related to the entities, and hierarchy of the entities in the simulation.

In a mission-level simulations there may be hundreds of entities. Therefore, the diagrams

should be flexible enough to allow the user to select which entities and on what aspect of

the entities the diagrams created by the entity focus on.

3.6.2 Areas of Visual Languages not Addressed

The diagrams presented in this research only address a subset of the information

that would need to be represented in order to completely represent simulation scenarios.

Specifically the diagrams do not address the architecture or definition of the entities used

72

in the simulation. Nor do the diagrams express communications or relationships between

the entities outside of the hierarchical command structure of the entities. Finally the

diagrams presented do not address the structure of the simulation systems. These areas,

which are important and are needed to completely create a visual language for simulation

scenarios were not addressed in order to reduce the scope of the work and are left for

future investiagations.

3.7 Evaluation Parameters

The visual language developed for the behavior specification of entities in the

scenarios of mission-level models is evaluated qualitatively in Chapter 5 on how well it

adheres to the principles of modeling languages. Simplicity, uniqueness, consistency,

seamlessness, scalability, supportability, reliability, and space economy are all key

principles in the design and evaluation of visual languages [BRO00].

3.7.1 Principles of Modeling Languages

Simplicity: Simplicity is the idea that a simple language can be fully understood

by the user and therefore allows the user to discover deficiencies in the language and

makes the user better-equipped to handle complex tasks. Furthermore, in simple

languages the user knows how to use the language in simple ways and therefore will most

likely know all the consequences of combining the language features. Simplicity is the

most important principle, because without simplicity none of the goals of a modeling

language can be reached. Furthermore, disadvantages of complex languages include a

large overhead in learning the language before it can be used and difficulty in the

implementation of tools supporting the language.

73

Uniqueness: Uniqueness is the property that a language “provides one good way

to express every concept of interest, and it avoids providing more then one.” A language

that has the property of uniqueness is smaller and more explainable than one that has

duplicate features.

Consistency: A language that has consistency is a language that has a purpose

and any feature in the language that does not support the purpose is discarded.

Consistency of the language should not be confused with consistency among the models

of a language, which is more of a reliability issue.

Seamlessness: “Seamlessness allows the mapping of abstractions in the problem

space to implementations in the solution space without changing notation, thus avoiding

the impedance mismatches that often arise throughout the development process”

[BRO00]. For the domain of this research seamlessness deals with the behaviors of the

scenarios being represented by the visual language without having to change the meaning

of the notation or add new notation. Not changing the meaning or notation of the

language prevents errors when going from the visual representation of the scenario to the

creation of the scenario file.

Scalability: Scalability is the property that a language is useful for both big and

small systems. To be scalable a language must provide a concise mechanism for

describing fundamental abstractions of the problem domain, allow the details of

abstraction to be hidden, and provide a grouping mechanism so the modeler can “collect

abstractions, name them, and hide their details” [BRO00]. As one of the goals of the

visual language designed for this research is for it to be composable, the language needs

to be able to represent both simple and complex sequences of activities.

74

Supportability: Supportability has two aspects. First, since models are used by

humans for writing or drawing models, and this is often done on a white board or with

pencil and paper, the language should be easy to produce by hand. Second, for large

software systems there should be tool support for drawing and managing the models as

well as maintaining the system as the development process proceeds. Therefore the

notation syntax should be easy to draw and display on a computer screen and the

semantics “should be defined to that it can be automatically or semi-automatically

translated into code” [BRO00]. For this research the diagrams created by this language

should be able to be converted into scenario files through development tools, but should

also be easy to draw by hand.

Reliability: A language that satisfies the principle of reliability is one that meets

specifications and reacts appropriately when given unexpected or incorrect input. The

idea of quality is directly supported by reliability.

Space economy: The principle of space economy states that “models should take

up as little space on the printed page as possible” [BRO00] Space economy is important

in the representation of behavior of simulation scenarios because the user may want to

view the behaviors of several different entities at once. Furthermore, if a behavior is

complex, the user should not have to flip through pages to view the entire behavior.

3.8 Evaluation Criteria

In order to test if the visual language meets the evaluation criteria, case studies of

the visual language were evaluated using simulation scenarios from the OneSAF

simulation. OneSAF is an experimental, composable simulation used by the Army for

75

the education and training of battalion officers. In OneSAF, users are given the ability to

assign a sequence of tasks to battlefield entities. Furthermore, the battlefield entities in

the OneSAF simulation are arranged in a typical command hierarchy, making it an ideal

candidate for the application of a treemap.

 The following criteria are based on the evaluation criteria used by Hakan Canli in

the evaluation of a the general modeling language presented in [CAN02], and the work

done by van Harmelen, Aben, Ruiz, van de Plassche in [HAR96].

Expressiveness: Were certain aspects or properties impossible to express? If so,

what? Were some things difficult to express?

Frequency of errors: What are the most common errors and the frequencies of

those errors. Why did those errors occur? How can they be avoided? Where is the

potential for errors?

Redundancy: Was redundancy present in models? Is it possible to identify

different types of redundancy? How can redundancies be avoided? Where did the

redundancy occur?

Locality of change: Do changes propagate through the models? If so, what are

the causes, and can they be avoided?

Reusability: Do the models enable reusability?

Reliability: Do models enable consistency checks? If not, why and how can the

inconsistencies be avoided?

Translatability: Are the models consistent and expressive enough to be used as

an input to a simulation tool?

Compatibility: What is the distribution of results of the above criteria?

76

3.9 Summary

Composable simulations allow developers to compose simulation scenarios

through the use of components. Currently there is no common specification for the

scenarios of composable simulation. Visual languages are one type of specification used

by other fields, such as software engineering, to model objects and systems without

regard to how they are implemented. In order to accurately represent the behavior of the

domain being researched several properties that a language must have were identified.

These properties include the ability of the language to represent reactions and temporal

conditions. Furthermore, the components representing activities must be able to accept

parameters and the language should be composable. Finally the language should focus

on activities and work at a high level of abstraction.

Several different behavior specification techniques are used in software

engineering and simulations. These specifications include ROOMCharts, activity graphs,

activity cycle diagrams, state transition diagrams, Petri nets, hierarchical finite state

machines and logic diagrams. Each of these specifications has advantages and

disadvantages when applied to the problem domain.

Good modeling languages have several different properties. These properties

include simplicity, uniqueness, consistency, seamlessness, scalability, supportability,

reliability, and space economy. In order to evaluate if the language developed has these

properties, case studies are conducted in Chapter 5 using scenarios for the OneSAF

simulation. Through the case studies the language is evaluated on its expressiveness,

frequency of errors, redundancy, locality of change, reusability, reliability, translatability,

and compatibility.

77

IV. Language Definition

4.1 Introduction

In order to make simulation scenarios easier to comprehend, easier to build, and

to provide a common descriptor for scenarios from multiple simulations, this research

proposes a visual language for describing simulation scenarios. The visual language

focuses on the representation of behaviors assigned to entities in scenarios and the

hierarchical relationship between the entities in the scenarios. This chapter presents both

aspects of the visual language. First, simulation behavior specification diagrams used to

visually represent the high-level behavior of entities in simulations, are defined. Second,

the application of treemaps to simulation scenarios, which is designed to help the user

understand the hierarchy of the entities in simulation scenarios, is presented.

4.2 Simulation Behavior Specification Diagrams (SBSD)

Simulation behavior specification diagrams describe the sequence of activities

assigned to battlefield entities in simulation scenarios. The use of the diagrams aids in

the comprehension and composition of behaviors assigned to entities in simulation

scenarios.

As the simulation behavior specification diagram is designed to be used by

several different simulation scenarios, the language can be broken down into two parts.

The first part of the language defines the base components, syntax, and semantics of the

language while the second part is the specification of the semantics of the language for

scenarios of specific simulation models. By allowing the components of the language to

be extended or refined with defined rules for each simulation, the exentsions allows for

78

the details necessary for execution of the simulations to be included in the diagrams

without limiting the diagrams to scenarios from one simulation model.

4.2.2 Components

The design of SBSD is derived from the principles of process dependency

diagrams and extended finite state machines. As with process dependency diagrams and

extended finite state machines, the components of the language can be broken down into

nodes and transitions. Figure 20 gives an overview of the abstract syntax of SBSD, using

standard UML notation. The abstract syntax shows the components that make up the

language and how the components are associated.

Figure 20. An Abstract Syntax of Simulation Behavior Specification Diagrams

79

The following sections describe each of the components of SBSD pictured in

Figure 20. Based loosely off of the UML specification, each section will consist of

several subsections. First, a short description of the component is given. Then the syntax

and semantics of the component are stated. Following the syntax and semantics of each

component, the purpose of the component in SBSD is discussed, along with a

justification for the visual representation of the component. If a subsection is not

applicable to a component it is not included. Pictures of the components and sample

SBSD diagrams are also given throughout the following sections.

4.2.2.1 Nodes

Nodes represent an activity or a sequence of activities, performed by battlefield

entities in simulations. They are the equivalent to states in a state transition diagram or

process dependency diagram.

Syntax

Nodes contain one identifier and zero or more attributes. The identifier serves as

a description of what activity the node is representing. Attributes represent the user

modifiable properties of the node or properties necessary to the execution and

comprehension of the scenario. Transitions start and end in nodes. There are two types

of nodes in SBSDs: atomic and multi-task node. Figure 21 shows an example of each

type of node.

Figure 21. Visual Representations of an Atomic and Multi-task Node

80

4.2.2.1.1 Atomic Nodes

An atomic node represents a single activity performed or assigned to an entity in a

simulation scenario. An atomic node and its attributes are the lowest level of detail

available to developers of scenarios.

Syntax

Atomic nodes are entered through transitions. They are exited upon completion

of the activity. The end of the activity is either defined by the behavioral model the

activity is representing or by the guard condition placed on the transition leaving the

node. For certain activities such as a move activity the parameters specified by the user

such as a location may be used to determine the end of the activity. An atomic node is

represented in SBSD by a circle with a solid border. The attributes of the node can be

represented below the identifier, or can be defined separately from the diagram.

Semantics

An atomic node represents the activities performed by battlefield entities in a

simulation scenario. The activities represent complex behavior models that have been

modeled by domain experts and programmed by software engineers. Depending on the

simulation being represented, the behavior may be a complex behavior composed of

several concurrent sub-activities. However, for the developer of the scenario, the activity

represented by an atomic node is the smallest piece of behavior the developer has control

over. The attributes of the node serve as parameters into the behavioral model and allow

users to specify information used by the behavior model in the execution of the scenario.

81

Purpose in the language

As the intent of the diagram is to represent the sequence of activities assigned to

or performed by entities in the simulation scenario, atomic nodes are a necessary

component of the language. Attributes are included in the atomic node to allow for

customization of the behavior models they represent. By allowing for the nodes to have

attributes, the node can represent multiple activities, instead of redefining the node for the

same activity each time one of the input parameters changes. The attributes also allow

for scenario creation as the attributes provides a way for the diagrams to represent the

information necessary for simulation execution.

Justification for Visual Component

The circle is similar to an oblong which is the standard visual components used in

process dependency diagrams to represent activities. The circle is also the standard

representation of states in state transition diagrams. By using the same component it

allows for users of process dependency diagrams to be able to read SBSD without having

to completely learn a new language.

4.2.2.1.2 Multi-task Nodes

A multi-task node represents a sequence of atomic and multi-task nodes

connected by regular and conditional transitions.

Syntax

Multi-task nodes are entered through a transition into the first node of the

sequence and are exited through the last node of the sequence through regular and

conditional transitions. There can only be one exit transition from the sequence of multi-

task nodes.

82

Through tools that provide an interactive GUI, users can expand or collapse the

missions. A condensed multi-task node is represented by a circle with a double line black

border. As shown in Figure 22, an expanded multi-task node is represented by the SBSD

diagram of the nodes and transitions it contains in the multi-task node placed inside a

rectangular box.

Semantics

A multi-task node represents a sequence of activities grouped together to create a more

complex activity. The activities represented by multi-task node are one abstraction level

higher than activities represented by atomic nodes. Multi-task nodes are used to group a

sequence of tasks commonly performed together. By grouping the sequence of tasks, a

higher level of abstraction is provided and reuse occurs because the user only has to

define a particular sequence of tasks once.

Figure 22. An SBSD diagram with a Multi-task Node

83

Purpose in language

Multi-task nodes are included in the language to allow for the combination of

activities into a higher-level activity. Allowing activities to be combined into one node

provides scalability, re-use, and economy of space in the language. Scalability is

provided because the multi-task node allows users to combine simple sequences into

more complex sequences without resulting in an overly complex diagram. The multi-task

node supports re-use because it allows a sequence of tasks to be defined once, and then

re-used as necessary. The multi-task node also provides space economy since it takes

much less room on the page than the corresponding full sequence of activities. Through

software tools, the multi-task node can be expanded and collapsed in order to provide the

desired level of detail. In text documents, the multi-task node can be defined in one place

and then referred to as needed. The multi-task node differs from an atomic node

composed of several concurrent behaviors because it can be defined by the user and

represents a sequence of activities rather then a set of concurrent activities.

Justification for visual component

The multi-task node is graphically similarly to the atomic node in order to

indicate that an activity is being represented. The notation is slightly different from the

notation of an atomic node to visually indicate that the node represents a sequence of

tasks.

4.2.2.1 Attributes

Attributes represent the user modifiable parameters of nodes.

Syntax

84

Attributes consist of a name, data type, and constraints. The name serves as an

identifier for the attribute. The data type identifies what type or unit of data is

represented by the attribute. An integer, the unit miles per hour, or object could all be

data types. The constraints specify the possible input values for the attribute. A

constraint can be a range of values, a rule, set of rules, or an enumeration of values.

Semantics

The attributes of a node serve as an interface to the node, allowing users to change

or view the properties of the node represented by the attributes without knowing the

implementation or detailed behavior of the node. During execution, certain attributes of

the node can be updated by the system. Other attributes are not updateable, but serve as

parameters defined by the user, that are used by the simulation for the execution of the

behavior.

4.2.2.2 Transitions

 Transitions are used to specify movement from one node to the next.

Syntax

Every type of transition is composed of a starting and ending node. The starting

node specifies which activity the transition is moving from, while the ending node

specifies which activity the transition is moving to. A transition can have only one

starting and one ending node. The starting and ending nodes must be two different nodes

(Although each node can represent the same type of activity).

There are four different types of transitions defined in SBSD. These transitions

are regular, conditional, temporary reaction, and permanent reaction. Temporary reaction

85

and permanent reaction transitions are extensions of conditional transitions. Figure 23

shows the visual representation of each of the transitions.

4.2.2.2.1 Regular Transition

A regular transition is used to connect an atomic or multitask node to another

atomic or multitask node.

Syntax

The use of a regular transition indicates that upon completion of the activity

represented by the start node of the transition, the execution of the activity represented by

the end node of the transition will begin. The only associations a regular transition has

are its starting and ending nodes. A regular transition is represented by a solid arrow

connecting the starting and ending nodes.

Semantics

A regular transition represents the progression in the activity that an entity is

performing from the activity represented by the start node to the activity represented by

Figure 23. Visual Representations of Transitions in SBSD

86

the end node of the transition. In activities connected by regular transitions, the end of

the activity is defined in the implementation of the activity or behavior model represented

by the node.

Purpose of component in language

The purpose of the regular transition is to represent the progression of the entity

from completion of one activity to the beginning of the next activity, which is a necessary

part of the diagram in order to be able to represent behavior of entities in simulation

scenarios. By separating the regular transition from a transition where a condition has to

be fulfilled it allows for the diagram to give the user a visual indication that the entity

proceeds directly from one activity to the next and that the behavior defines what

signifies the end of an activity.

Justification for visual component

The directed arrow was selected to represent transitions as it is the standard

representation of transitions in process dependency diagrams.

4.2.2.2.2 Conditional Transition

 Conditional transitions represent transitions that contain a guard, or condition that

must be met before the transition can take place.

Syntax

Conditional transitions are regular transitions that have a guard assigned to them.

A guard is a Boolean condition that must evaluate to true in order for the transition to

occur. When conditional transitions are used, the end of the start activity is determined

by the guard in the transition and not by the activity represented by the start node of the

transition. A conditional transition is represented by a dashed arrow connecting the

87

starting and ending node. The condition is placed in a box next to, above, or below the

transition. In the case that the condition is lengthy a label can be placed in the box and

the condition defined in a separate location. Through a GUI, the user may also be

allowed to minimize or maximize the condition depending on the desired level of detail.

Semantics

Conditional transitions are used to represent the transition of the entity performing

one task to performing another task after some event has taken place or a condition has

been met. Furthermore, the use of guards on the transitions allow for temporal conditions

to be represented in the language. Examples of temporal conditions include the

specification of a duration of time the entity performs an activity, an entity passing a

control point, or an entity receiving a message. When being applied to specific

simulations models each of the models will need to define the type of guards that are

allowed in scenarios for that model.

Purpose of component in the language

One of the major drawbacks of some process dependency charts is that they

cannot represent temporal conditions, which are an important part of simulation

scenarios. By allowing for conditions to be placed on transitions the temporal conditions

can be represented in SBSD.

Conditional transitions were made a separate component from regular transitions

in order to give the user a visual cue that the transition is not a regular transition without

having to study the details of the diagram. By knowing that the transition is a conditional

transition, the diagram also tells the user that the condition placed on the transition

defines the completion of the activity. In this case the user cannot assume that the start

88

activity was completed as defined by its attributes. For example if a duration of two

hours is placed between a move activity and halt activity and the speed of the entity did

not allow the entity to reach its destination in two hours, the move activity would not be

completed as defined by its attributes. Finally, through conditional transitions, the

condition can be defined elsewhere, but still be noted on the diagram, reducing

complexity.

4.2.2.2.3 Reaction Transitions:

Reaction transitions represent the transition to nodes that represent activities that

serve as reactions to events in the simulation environment.

Syntax

Reaction transitions contain a guard which indicates what events or conditions

cause the transition to be taken. Temporary reaction and permanent reaction are two

types of reaction transitions defined in SBSD. Reaction transitions are associated with a

start node, an end node, and a guard.

Semantics

In simulations, entities may take a course of action different from the one

assigned as a reaction to events in the simulation. The change of course in action may be

caused by the simulation program or by a user monitoring the scenario as it runs. When

the entity diverts from performing the activities it has been originally assigned, it leaves

the activity that it is currently executing before its completion, in order to execute a new

activity. The unexpected courses of actions are prompted by a guard condition or an

event, and are referred to in SBSD as reaction transitions.

Purpose of the component in the language

89

The reaction transition components are needed for two reasons. First, in

analyzing the actions executed by an entity in a scenario, the reaction indicates to the user

that the task performed was not a part of the original mission. In the creation of scenarios

it indicates that the transition may, or may not, be taken. Unlike a node that has two or

more conditional transitions leaving the node, where the user knows one of the transitions

has to be taken, in a reaction transition there is no guarantee that the transition will be

taken.

4.2.2.2.4 Temporary Reaction Transition

 A temporary reaction transition represents a shift in the activity that an entity is

performing to an activity that is not a part of the original set of activities assigned to it.

Syntax

A temporary reaction transition represents the shift in the activity that an entity is

performing from the activity represented by the start node to the activity represented by

the end node of the transition. The transition is triggered by the condition or event

associated with the transition. Upon completion of the activity represented by the end

node of the reaction transition, the activity represented by the start node is resumed. A

temporary reaction transition is represented by a double line, with arrows pointing to both

the start and end task.

Semantics

A temporary reaction transition is used when a modeler wants to specify that in

the occurrence of a specific event, the entity should temporarily stop executing the

activity represented by the start node of the transition and complete the activity or

sequence of activities represented by the end node of the transition. Upon completion of

90

the temporary activity the entity returns to executing the tasks represented by the node

represented by the start node of the temporary reaction transition. When the diagram is

used to represent events that an entity performed in the simulation, the temporary reaction

is used to indicate that the activity at the end of the transition was not a part of the

original sequence of assigned activities.

Purpose of component in the language

A temporary reaction is needed because it indicates that the activity that the

represented by the start node is not completed before the reaction is taken. Instead the

start activity is completed in two parts. Furthermore it reiterates the fact that the activity

represented by the end node, may, or may, not take place.

Justification for visual component

The use of an arrow represents that a transition is represented, while the double

headed arrow indicates that the transition will eventually return to the activity represented

by the start node.

4.2.2.2.5 Permanent Reaction Transition

A permanent reaction represents an action that is permanently taken by an entity

and not a part of the original set of assigned tasks.

Syntax

In a permanent reaction transition the entity never returns to complete the task

represented by the start node. A permanent reaction transition is represented by a double

line, with an arrow pointing to the end task. A condition or guard is associated with a

permanent reaction transition to indicate when the transition can be taken.

Semantics

91

A permanent reaction transition is used when a modeler wants to indicate that on

the occurrence of specific events the entity should stop executing the task represented by

the start node and proceed to the activity represented by the end node of the transition.

Once the entity has started to execute the activity represented by the end node of the

simulation it will not return to the start node upon completion of the activity. As with

temporary conditional transitions, the transition may or may not be taken.

Purpose of component in the language

If a permanent reaction is taken, it indicates to the user that the activities

represented by nodes connected to the start node by regular or conditional transitions are

never executed. Therefore the component representing a permanent reaction transition

must be different from temporary reaction transition.

4.2.2.11 Examples

Figure 24 shows a SBSD modeling the behavior of an entity in a OneSAF

simulation. In the example an USSR Mi - 24 has to wait for the On Order command,

then Fly Route for 180 seconds, then Hover 60 seconds before landing. Figure 25 shows

an example of a SBSD with a permanent reaction task.

4.2.3 Language Adaptability

Similar to how UML can be extended to be applied to specific domains by

creating profiles, SBSD can also be modified to be used by specific simulations. In

UML, when the language needs to be refined to apply to a specific domain, a profile for

that domain can be created. As discussed in Chapter 2, profiles allow constraints and tag

definitions to be applied to the components of UML. Stereotypes specify attributes that

92

Figure 24. An Example SBSD Diagram

the components of UML diagrams must have and refine the semantics and syntax of the

components. Like UML, SBSD is designed to allow similar modifications to be made.

First, the language can syntactically be changed through the addition of

constraints on the cardinality of transitions entering and exiting nodes. Currently the only

constraint placed on the semantics is that there can be at most one regular transition

leaving a node. However to adjust for different simulations, rules on how many of each

type of transition can leave or enter a node can be added. For example, in a situation

where a sequential path is desired and an entity is not allowed to return to a task once it

has been completed (in order to prevent cycles), a constraint that only transitions whose

starting nodes cannot be traced back to node A can end in node A could be added to the

language.

Another way that the language can be customized is through placing limitations

on the type of guards that conditional and reaction transitions can have. For example, in

the OneSAF simulation the only type of guards allowed on conditional transitions are a

duration constraint, a specification of an HHour, the reception of a message, or reaching a

93

Figure 25. An SBSD Diagram with a Temporary Reaction Transition

control point. Any other type of guard placed in a conditional transition used in a

simulation scenario for OneSAF would make the scenario invalid. However, in other

simulations there may exist other guards that can be specified.

The language can also be extended through the addition of new components and

semantic constraints that are specific toward a simulation. Other types of adaptations

require certain attributes to be defined in every node. As long as the change does not

affect or contradict the semantics and syntax of the components defined here, the change

is valid.

Due to the fact that the adaptations to the language are limited to changes that do

not contradict the syntax and semantics of the language, the diagrams for any simulation

can be read and processed the same way. The adaptations do not change the basic

semantic or syntactical rules of the components and therefore the meanings of the

diagrams stay the same. Rather, the adaptations become important when the language is

94

used to build scenarios for specific simulations, because it is these rules that prevent the

user from building a syntactically invalid scenario.

4.2.4 Comparison of SBSD to other Behavior Specifications

The nodes in SBSD represent complicated behavior models. It is the intent of the

language to allow for the user to modify/view the pre-determined attributes of the

activities and not to change the underlying behavioral models they represent. As SBSD

was designed to represent the high-level behavior of entities in simulation scenarios and

takes into accounts the properties of the domain behavior, SBSD has several advantages

over the other behavioral specification models discussed in Chapter 2.

The language is consistent with the representation of high-level behaviors of

battlefield entities in simulation, because each component in the language serves a

purpose. In the other behavior specification techniques, each technique contained extra

components that would make the language inconsistent for the domain of this thesis. For

example, ROOMCharts and activity graphs allow for the specification of actions in the

transitions or states of the diagrams, and OPNET implemented the Pro-C language.

Activity graphs also include branching components for the representation of concurrent

actions and activity cycle diagrams contain components used to represent the amount of

resources in the process being modeled. By eliminating the extra information and

components, the diagrams become easier to understand which decreases the possibility of

error when applying the language to the problem domain. Furthermore the removal of

the extra components simplifies the language.

95

SBSD provides for expressiveness in the language as it allows for aspects of the

problem domain to be represented that the other diagrams do not. Through reaction

transitions it provides a way for reactions to be represented in the diagrams. Activities

that are performed as a reaction are interpreted by humans and computers differently than

activities that were originally assigned to the entity. Therefore, in order to ensure

reactions are interpreted properly, the language representing the behavior in the problem

domain needs a way to represent what activities are reactions and what activities are

assigned. None of the other specification methods studied provided a way to distinguish

the reaction transitions from conditional transitions.

SBSD allows for nodes that represent activity to have attributes and for the

attributes of the node to be specified by the user. If the user is not given the ability to

specify attributes for activities then a new behavior model would be needed for every

possible variation of the behavior. For example, if the attributes of a node could not be

modified instead of having an activity that represents one fly route behavior model with

route as an attribute, an activity would need to be created to represent a behavioral model

for every possible route. Although several of the diagrams allow the specification of

parameters activity cycle diagrams and Petri nets do not.

Furthermore, SBSD is capable of representing temporal conditions, which is a

necessary component of behavior representation in mission-level simulation scenarios.

Through the use of guards on transitions, temporal conditions such as performing a task

for three minutes or waiting until a control point is reached to transition to the next

activity can be represented through SBSD. Although the logic diagrams used in CBT

allow for temporal conditions to be represented in the diagrams through the different type

96

of connectors or transitions, the types of temporal conditions are limited. Similarly,

SBSD also allows for there to be no condition on transitions, to indicate that once an

activity ends the next activity automatically takes place. ROOMCharts, hierarchical state

diagrams, Petri nets, and the state diagrams used in OPNET all require an event to trigger

transitions.

SBSD is also a desirable behavior specification diagram compared to the other

behavior specification diagrams because it allows for the composability of behaviors,

which helps to make the language more scalable, reusable, and composable. Although

activity graphs, hierarchical state charts, the state charts used in OPNET, and logic

diagrams used in CBT allow for composition of activities, only logic diagrams have a

condensed representation of the composed activities. The other diagrams allow for the

composition of activities, but the diagram displays the activities inside of the parent

activity. SBSD on the other hand, offers a component that represents the composed

activities, which can than be expanded or condensed based on the level of detail set by

the user. The two representations of the composition of activity help to promote

scalability and economy of space in the diagram.

Finally, the diagram has several high-level visual indicators of information not

present in the other diagrams. First, the language visually indicates what transitions are

guarded. One of the main goals of SBSD is to aid in the understanding of the behavior of

the entities through the elements of the diagram. Visual cues, therefore, are important.

In the previously discussed diagrams there are no visual indicators for when a trigger for

a transition is guarded. For a user to figure out if the transition is guarded they must read

the text of the transition. With SBSD the dashed line of the conditional link visually

97

identifies that the transition is guarded, letting the user quickly identify which transitions

are conditional. Furthermore, in SBSD the conditions on transitions are easy to identify,

while in the ROOMCharts, state diagrams, and activity graphs the user has to locate the

trigger in a line of text that may contain other information such as actions in it.

In addition to providing a visual cue to what transactions are guarded, SBSD and

the tool supporting the language allow for the visual contraction and expansion of nodes

that contain sub-nodes. In ROOMCharts and activity graphs a state can be broken down

into sub-states, yet the diagram still shows all the sub-states and transitions between the

sub-states. In SBSD less space is taken up by allowing the user to represent a node that is

a group of other linked nodes as a variation of a regular node. The node being

represented by a double line also quickly indicates to the user that the node can be

expanded. Through the tool developed in conjunction with the language the user is given

the ability to expand and contract the nodes containing sub-nodes to the desired level of

detail.

In Chapter 2, several properties were identified as being necessary to the

representation of high-level behavior in simulations. These properties included the

ability of the language to represent reactions and temporal conditions. The language

should also be composable, have a higher level of abstraction, allow for parameters to be

represented in the activity nodes, and have its major focus be on the activities and not the

transitions. Table 3 is a comparison of how SBSD compares to other behavior

specification techniques in respect to these properties.

98

Table 3. Comparison of Behavioral Specification Techniques

 Reactions Parameters Temporal
Conditions

Composability Focus on
Activities

Higher
Level of

Abstraction
SBSD Yes Yes Yes Yes Yes Yes

ROOMCharts No Yes Yes No Yes Yes

Activity Graphs No No Yes Yes Yes Yes

Activity Cycle
Diagrams

No Yes No No Yes Yes

State Transition
Diagrams

No No Yes Yes No No

Petri nets No No Yes No No No

Hierarchical
FSM

No Yes Yes Yes Yes No

Logic Diagrams No Yes Yes Yes Yes No

4.3 Application of Treemaps

The behavior of the entities is not the only item of interest when looking at

simulation scenarios. Another area of interest is the hierarchy between the entities in the

scenario. One approach used in information visualization to display hierarchical

information is treemaps. Treemaps are a hierarchical interactive visualization method

used for presenting hierarchical information. Two important features of treemaps are that

they use 100% of the designated display, and that they are interactive. By being

interactive, treemaps allow users to specify the structure and content of the hierarchical

information displayed in the treemap.

4.3.1 Structure of Treemaps

In a treemap, the tree structure is represented by partitioning the display space

into a collection of rectangular bounding boxes. The size of the bounding boxes are

determined by the weight of the nodes inside of the box, while the drawing of the nodes

99

inside the bounding box are determined by the content of the nodes and can be

interactively controlled. Properties that the user can have control over include colors,

borders, etc.

4.3.2 Treemaps applied to Simulation Scenarios

Treemaps can be applied to simulation scenarios by using the command structure

as the determination of what units and entities serve as bounding boxes and what units

and entities appear in each bounding box. For example, a US M1 company is composed

of two vehicles and three platoons. Each platoon is then composed of four vehicles.

Figure 26 shows the company structure discussed above in a standard organization chart,

while Figure 27 shows the company represented by a treemap.

In the treemap, the box representing a unit or entity is always in the bounding box

that represents the commanding unit of the entity. Furthermore, the sizes of the units and

entities in the boxes are proportional to the number of entities and units that the unit or

entity is in charge of. Therefore, a vehicle will always be smaller then a platoon when

they are in the same bounding box. By adjusting size of the boxes for the size of the units

it allows for, units and entities that are larger more space to display information. It also

allows the user to look at the treemap and quickly identify which units are the largest.

The size of the units in the treemaps can also be changed to represent other factors such

as health or ammunition supply of the units. In the organizational chart, it is difficult to

tell what size the units are, and the organizational chart has a lot of unused white space.

100

Figure 26. Organizational Chart of an US M1 Company

Furthermore, the organizational chart is not dynamic and does not allow the user to

change its properties.

Other properties of the treemap can also be changed to display information about

the entities that the user might be interested in. One such property is color. By setting

Figure 27. Treemap of an US M1 Company

M1 Company

Vehicle Vehicle M1 Platoon M1 Platoon M1 Platoon

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

Vehicle

101

the color of units to portray certain information such as capability or the assignment of a

mission, the treemap allows the user to quickly interpret the chart and get the desired

information. Furthermore, as in SBSDs the treemaps can be adapted to meet the needs of

specific simulations. The adaptations can define what property determines whether

entities are represented by bounding boxes, what property determines the weight of the

boxes, and what color the boxes are.

4.4 Summary

SBSDs are used to visually represent the behavior assigned to entities in

simulation scenarios. SBSDs are a deviation of process dependency charts and extended

finite state diagrams. When compared to the behavior specification techniques discussed

in Chapter 2, SBSD proves to be better suited than the other techniques for the

representation of activities executed by entities in simulation scenarios. The treemap

representation of a hierarchy makes better use of the space allocated for the chart and

gives visual indicators as to the size of the entities and units.

102

 V. Implementation and Case Studies

5.1 Introduction

In order to demonstrate the applicability of SBSD and evaluate SBSD against the

criteria defined in Chapter 3, the language was applied to simulation scenarios for the

One Semi-Automated Forces (OneSAF) simulation. The case studies performed using

OneSAF provide a basis to evaluate SBSD. To demonstrate the benefits of applying

treemaps to simulation scenarios, treemaps were applied to several OneSAF simulation

scenarios.

5.2 Description of OneSAF

OneSAF is a composable simulation currently in test and development by the

United States Army. As defined by the history of OneSAF, “OneSAF will be a

composable, next generation computer generated forces that can represent a full range of

operations, systems, and control process from individual combatant and platform to

battalion level, with a variable level of fidelity that supports all modeling and simulation

(M&S) domains”[STR02A]. The finished simulation is intended for the training of

battalion and brigade commanders and their staff. OneSAF is implemented through the

Object Test Baseline (OTB). For this research the OneSAF TestBed Baseline Version

1.0 was used.

103

5.2.1 Behavior Architecture of OneSAF:

In OneSAF, simulation scenarios are composed of battlefield entities and the

behavior assigned to the entities. The behavior of the entities in the simulation is

controlled through tasks, task frames, and missions. A task is defined as, “a behavior

performed by an OTB SAF entity or unit [STR03d].” A task is defined by its

characteristic parameters. The parameters have default values which can be overridden

by the user.

The OTB System Design Document defines several properties of tasks. First,

tasks can be done as a unit. Therefore, when a task is assigned to an entity in a hierarchy

that entity along with its children will perform the assigned task Next, tasks are

sequenced together in order to achieve a mission. A sequence of tasks can be grouped

together and have an objective. Certain tasks, like monitoring, can also take place

continuously regardless of what task is being performed for the mission. Each task is

also defined in the system and represents a behavior model. Therefore tasks are

representations of actual battlefield behavior and serve as details into the implementation

of the system [STR03b].

Tasks are grouped together into task frames, which are groups of tasks that

execute concurrently. Task frames typically contain move, shoot, coordinate, and react

tasks. Task frames are used to represent a phase in a mission. Task frames can be

assigned by the user or by the simulation software. Examples of times when task frames

are assigned by simulation software are when high-level tasks (such as those assigned to

a battalion) assign tasks to subordinates, or when reactive tasks construct and execute

tasks frames in response to changes in the battlefield [STR03B].

104

Task frames are linked together in a sequence to form missions. Enabling tasks

can be placed between the task frames and serve as a way to represent predicted

contingencies. Enabling tasks serve as predicate functions, and a task that has an

enabling task can only be executed after the enabling task evaluates to true.

All the task frames assigned to a unit are stored in a task frame stack. In a task

frame stack the topmost task frame is active, while the rest of the task frames are

suspended. New task frames can be added to the top of the stack as a result of a reactive

task or by the user observing the execution of the scenario [STR03b].

5.2.2 User Controllable Behavior in OneSAF:

 In OneSAF the user can control behavior by creating pre-planned missions,

setting up reactions, and issuing immediate commands. Users set up pre-planned

missions through execution matrices. Figure 28 shows an example of an execution

matrix used in the OTB. Execution matrices in the OTB are based on the execution

matrixes used by the Army. The execution matrix divides the battle into phases, and

shows what each unit should be doing at each phase. In setting up a mission, users assign

a task frame to units or entities in the simulation using the execution matrix. When they

assign the task frame to the unit, the user is given a set of parameters concerning the task

frame that they can adjust. Location, formation type, and maximum speed are all

examples of parameters the user has control over [STR03c].

 In between the task frames users can also place enabling tasks or conditions that

have to be met before the execution of that task frame can begin. In OTB Version 1.0 a

duration, HHour, control point, or message from another entity are valid enabling tasks

that the user is able to select.

105

Figure 28. Execution Matrix Used in the OTB

 Reactive triggers, which are represented by a task, are used to implement

reactions. Reactive triggers monitor the current conditions of the battlefield and then

invoke the corresponding task when the conditions of the task are met. Users can define

situations and map reactions to them through the parameters on reactions. Users also

have the ability to modify an existing task or assign new tasks to units and entities during

the execution of the simulation. Users can also interrupt the current mission to perform

new tasks, and then have the entity return to executing the assigned mission [STR03C].

5.3 Application of SBSD to OneSAF Simulation Scenarios

In OneSAF the behavior that the SBSD is intended to represent is the high-level

behavior represented by task frames. The users of the simulation are not concerned with

the tasks, nor the detailed behavioral models behind the tasks. Instead, they are interested

in the task frame they are assigning and the parameters that they can adjust. In the case

studies presented at the end of this chapter it shown that the language is able to accurately

represent the set of task frames and the properties of the task frames assigned to units and

entities in OneSAF.

106

5.3.1 Simulation Scenarios and Persistent Objects in OneSAF

 In OTB Version 1 simulation scenarios, all the persistent objects in the simulation

are saved in a text file. The use of a text file allows for scenarios from older versions of

the simulation to be re-used in newer versions and for manual changing of the simulation

scenario through a text editor. The use of a text file also allows other programs, such as

the one written for this research access to information stored in the scenario.

Included in the persistent objects written out to the text file are the entities and

units in the scenario and the task frames that have been assigned to or completed by

them. The persistent objects store the parameters assigned by the user for the objects and

tasks assigned to the entities along with other information. Figure 29 gives an example of

a text version of a task frame object in a scenario file. Although the text file of the

scenario is readable by humans, it is tedious to interpret. The references used in the

objects are through other object names, and putting together sequences of task frames, or

finding out what task frames belong to what task is a time consuming process.

Furthermore, the text files are not small and a scenario representing four vehicles and

their missions is 241 pages long.

5.4 Program Supporting SBSD and OneSAF Simulations

In order to apply SBSD to OneSAF, a Java program Simulation Scenario

Specification Tool (SSST) was developed to read the scenario files and allow the user to

view, edit, and assign behavior to entities and units in the scenario. SSST is divided into

two parts. The first part reads in the simulation scenario and then recreates the structure

of the scenario in memory. A graphical user interface (GUI) makes up the second part of

107

the program and it is through the GUI that the users can view, modify, and create

behavior for the entities in the scenario. A third part of SSST needs to be implemented in

order to write out updated simulation scenarios, but is left for future work.

("objectClassTaskFrame" "object7"
(

("name" "FWA Return to Base")
("opaque" "true")
("destroyWhenDone" "false")
("assigned" "true")
("instruction" "TIIPopOpaque")
("unit" "object9")
("commandingUnit" "no object")
("nextStackFrame" "no object")
("previousMissionFrame" "object10")
("sponsoringTask" "no object")
("logicStack"

(
(128)
(0 1 253 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0)

)
)
("etaskCount" 2)
("enablingTask"

(
(2)
("object11" "object0")

)
)

)
)

Figure 29. Representation of aTask Frame in a Scenario File

108

SSST was implemented in Java for three reasons. First Java, is portable and can

be run on several platforms. Second, Java has a several libraries and tools that support

GUI development. Finally, since Java focuses on objects, the concept of entities and

tasks assigned to the entities maps into Java without a lot of complexity.

5.4.1 Parsing the Simulation Scenario Files

 The first part of SSST is designed to read in the scenario files and then reconstruct

the model of the unit hierarchy of the entities in the scenario and the missions assigned to

each entity respectively. The simulation scenarios files created by OneSAF consist of a

list of objects. The objects represent the entities in the simulation, the state of the

entities, the task frames assigned to the entities, the tasks that make up the task frames,

and the state of the tasks. Each object contains an object ID, an object type, and a list of

attributes and values. All references in the simulation file are made by using the object

ID of the object being referenced.

The storage of the entities and task frames assigned to the entities is handled

through the unit class, taskframe class, tasks class, enabling task class, and scenario class.

The unit class holds information about each entity in the system, along with references to

its commanding unit, subordinates, the first task frame in the mission, and the task frame

the entity was executing or waiting to execute when the scenario was saved. The task

frame class holds references to the unit a task frame is assigned to, to the next and

previous task frame in the mission and any enabling tasks associated with the task. The

scenario class holds the list of the battlefield entities and units in the scenario.

109

In order to set up the information needed for the scenario development two passes

of the simulation scenario are made. In the first pass, all the task frames in the scenario

are read in and stored in the taskframe class. Then in the second pass all the units and

entities in the simulation are read in.

The program then calls methods that set up references between the units and the

task frames, and between the task frames. The references between the task frames work

like a linked list with each task frame containing a reference to the previous task frame

and to the next task frame in the mission. In the case where a task was a reaction, a

reference to the task frame the reaction was called from is also stored. By storing this

reference it allows for reaction tasks to be displayed and referenced. References to

enabling tasks, or tasks that control when the task frame can be executed are also set up at

that time. The enabling task class is an abstract class, which is extended by concrete

classes representing the conditions allowed in OTB Version 1.0. Figure 30 shows how

task frames and entities are linked in the program. After the objects in the scenario have

been loaded into the Java application and the references set up, the scenario is ready to be

viewed and modified through the GUI.

5.4.2 The Graphical User Interface

The second part of the Java program is the GUI. It is through the GUI that users

are able to view tasks, modify existing tasks, and create new tasks. Figure 31 is a screen

shot of the GUI. The GUI can be broken up into four different parts. Area 1 is a tool

bar. On the toolbar are buttons which represent the different components in the SBSD

language along with a selection and clear button. It works like the tool bar in most

110

Figure 30. References Between Task Frames and Units in the Java Program

programs. To add a component onto the screen the user simply selects the component

they want in the tool box and then clicks the mouse in area 4 where the component

should be placed. Area 2 shows the available tasks and missions that the user can click

on. By selecting a task frame the tasks performed in the task frame appear below the

missions. Area 3 displays the units and entities involved in the scenario. By clicking on

the entities, the assigned or completed behavior of the entity is displayed in Area 4. By

right clicking the user is given the option of editing the behavior or viewing the text of

the scenario file. Area 4 serves as the canvas for viewing or editing behaviors assigned to

the units. The user can also create multi-task nodes through another editor, and then

assign the multi-task nodes as part of the mission to the entities in the simulation

scenario.

111

Figure 31. Screen Shot of the Graphical User Interface for SSST

When a multi-task node is inserted into the diagram it can be viewed in the

condensed form or in the expanded form. In either form the user is still able to edit the

parameters of the individual tasks in the multi-task mission. By allowing users to group

commonly used sequences of tasks together it saves time for the user, and takes up less

space in the diagram. Figure 32 shows a sequence of task frames with a multi-task node

condensed and then expanded.

 It is mainly through the creation of multi-task nodes that SSST supports

composability. In SSST, the user can create a sequence of atomic nodes and make a new

node out of them. That new node can then be used in another sequence of nodes used to

create a multi-task node. However to the user, the multi-task node can be treated in the

same way as an atomic node. Therefore, complex sequences of tasks can be made up of

112

Figure 32. A Mission with a Multi-task Node Condensed and Expanded

sequences of tasks which themselves are composed of sequences of tasks. SSST also

supports composability because it lets the user treat the behavior an entity is assigned as a

separate component of the entity.

5.4.2.1 Viewing of the Simulation Scenarios

 In order to make the GUI adaptable to displaying the scenarios of simulations

other than OneSAF, the part of the GUI that displays the behaviors of the entities in the

simulation was designed to use the properties of the behaviors for a simulation scenario

along with a generic behavior object. In the program, a class called “Behavior Object” is

used to represent the information to be displayed in the SBSD diagram. A behavior

object contains the name of the behavior, any enabling conditions, and has the potential

to list any attributes of a behavior modifiable by the user.

113

The behavior object can be modified as needed to meet the needs of different

simulation scenarios. When the user selects a scenario to load into the GUI, the program

parses the scenario into memory. The scenario object then provides the GUI with a list of

behavior objects. The GUI then goes through and displays the SBSDs based on the

information stored in the behavior objects. Through the use of behavior objects, the

parsing of the scenario can be recreated for scenarios of other simulations and as long as

the scenario can be parsed into behavior objects, the GUI can easily be adapted to display

other simulation scenarios.

5.5 Program Supporting TreeMaps

Another aspect of the SSST is the ability of the program to display the hierarchy

of the units in a treemap. Figure 33 shows a screen shot of the GUI developed as part of

SSST to apply treemaps to the simulation scenarios. The screen shot shows how the

treemap breaks up the hierarchies and places each unit in the bounding box of its

commanding unit.

5.5.1 Implemented Capabilities of the TreeMap Program

The purpose of the treemap is to allow the user to view information about the

units and entities in the scenario in a manner that facilitates the decision-making process.

This is done by using a format that maximizes 100% of the display area and allows user-

interaction with the treemap. The treemap also sets the size of each unit and entity

relative to that unit or entity’s size in the simulation, giving the user a visual indication of

the size of each force and unit.

114

Figure 33. A Treemap of a OneSAF Scenarios

One way that the user can interact with the treemap is by selecting the level of

detail displayed for each unit and entity. When a user clicks on a unit that has

subordinates, the subordinate units and entities are displayed within the space allocated to

the unit clicked. By right clicking on the name of the unit, the user is given the option to

remove the subordinate units.

A second kind of interaction that the user has is the capability of bringing up a

unit and entities in a separate frame. By bringing the unit up in a separate frame, the user

can get more information about the unit. Information that can be viewed about each unit

or entity when selected include a SBSD of the mission assigned to the unit and the

attributes of the unit.

115

A third kind of interaction the user has with the treemap is to change the color of

the units and entities in the treemap display information about the units. SSST allows the

user to view the capability of each unit. Figure 34, shows a screen shot of the program

where the color of the units and entities are determined by the capability of each entity

and unit. By using color to represent the capability of the units and entities in the

simulation the user can quickly find out which units are the strongest and weakest units.

For example if gray is used to represent units with a capability equal to 5 and black is

used to represent a unit with a capability of 2, one can determine from the color that a

gray unit has more capability then a black unit, After a scenario has been executed this

feature also allows the user to quickly determine which units lost the most capability

during the scenario execution.

5.6 Case Studies

In order to validate the usefulness of SBSDs, the language was applied to several

OneSAF simulation scenarios. The first simulation scenario is an example scenario from

the user manual for OneSAF. The rest of the simulation scenarios tested are scenarios

provided by the OneSAF Program Office.

5.6.1 Case Study One

The first case study conducted represents the behaviors of entities in a simple

simulation scenario. The scenario is taken from Volume One of the user’s guide for OTB

Version 1.0. It consists of four entities, a USSR MIG-29, a USSR MI-24, a US AH-64A,

and a US F-14D. The USSR entities are placed on the “Other Force” side, while the

United States aircraft are placed on the “Distinguished Force” side of the battlefield.

116

Figure 34. A Treemap Coloring the Units Based on Capability

Each of the entities in the scenario is assigned a short mission to complete by the

developer of the scenario. Figure 35 shows the execution matrixes for each of the entities

in the scenario.

In order to evaluate the scenario, a file representing the state of the scenario

before it was executed and a file representing the state of the scenario after it was

executed were made. Figure 36 shows the SBSD for the state of scenario before the

scenario was executed and 37 show SBSD of the scenario after the scenario was

executed.

From the second diagram one can see that the USSR MIG-29 took the permanent

reaction transition to execute the task air attack, and did not complete the ingress

117

Figure 35. Execution Matrices for the Entities in Case Study One

operation. In the execution matrix, there is no way to note that this action was taken, or

that the action that was assigned before the attack took place.

 What the diagram does not show is the air attack reaction tasks frames that the US

F-14D entity executed in response to sighting the USSR MIG-29 and the USSR MI-24.

However, these missing pieces are not due to deficiencies in the language, but occur since

insufficient information to reconstruct them exists in the scenario files. In the current

version of the object test baseline used to run the scenarios, once a reaction task is

completed the simulation deletes the task frame representing the task from the database

used to generate the simulation scenario files. Tasks that are assigned to the entity by the

user, on the other hand, are saved even after execution. With modifications of the OTB

118

Figure 36. The SBSD Diagram Showing the Behaviors Assigned to the Entities

that allow for the entire sequence of task frames executed by an entity to be passed to the

Java program, the tool should be able to correctly represent the behaviors of the entities.

Figure 38 shows the diagram with the reaction behaviors performed by the US F-14D.

The diagram can further be expanded to include the attributes of the behaviors such as the

location of the base the entity is returning to and the target of each of the Air Attack

behaviors.

119

Figure 37. The SBSD Diagrams for the Behaviors Actually Performed by the Entities in

Case Study One

5.6.2 Case Study Two

The second case study represents the behaviors of entities in a scenario that is

slightly more complex scenario than the scenario used in the first case study. The

scenario used in case study two is from the OneSAF program office. The scenario is

120

Figure 38. Actions Performed by US F14D, including the Reaction Tasks

made up of two forces. The “Other Force” is made up of four USSR MIG-27D aircraft

and four USSR T80 platoons. Each T80 platoon consists of three T80 ground vehicles.

The “Distinguished Force” is made up of four US F-16 aircraft, two US A-10 aircraft,

and three US M1A platoons. Each M1A platoon consists of four M1A ground vehicles.

Unlike the previous scenarios, where each entity or unit in the simulation was

assigned a sequence of multiple task frames to execute, each of the entities and units in

this simulation was only assigned one task frame. All of the aircraft for both sides were

assigned the attack ground target task frame. Two of the USSR T80 platoons were

assigned the OPFOR road march task frame, and the remaining USSR T80 platoon was

assigned a traveling overwatch task frame. The US platoons were all assigned the assault

task frame. Because each of the entities were only assigned one task frame, the only

121

benefit of SBSD diagrams over execution matrices is graphical visualization. Figure 39

shows one of the SBSD diagrams generated in the second case study.

From the SBSD diagrams generated it looks like there is a low level of activity in

the scenario. However, when the scenario is executed all of the aircraft shoot targets, and

two of the ground platoons perform reaction tasks based on the detection of enemy

aircraft. Therefore, it is evident that some the task frames consist of more then one

activity.

In order to deal with the complexity of certain task frames SSST was expanded to

give the user the ability to define SBSDs for task frames. Due to the high level of

complexity of the behavior represented by some of the task frames and in order to stay at

a higher level of abstraction the SBSDs for task frames are created through human input,

instead of by parsing a task frame file. The diagrams created are based on the task frame

and task descriptions in the User Manual for OTB Version One. In this instance, the

SBSDs are only a representation of the behavior contained in the task frame, and cannot

be converted into code for use by the OTB. Figures 40, 41, and 42 show the SBSDs for

the assigned task frames. The OPFOR March task frame is not defined in the User

Manuel for the OTB.

Figure 39. An SBSD Diagram for a USSR MIG27D in Case Study Two

122

Figure 40. An SBSD Diagram of an Attack Ground Target Task Frame

The SBSDs of the task frames are a much better representation of the behavior

that the entity is performing than the representation provided by an atomic node. From

the atomic node representation there is no information about the possible reactions that

might take place, or the break down of sub-activities that the task frame performs. For

example, in the SBSD of the ground target frame one can see that there are three different

Figure 41. An SBSD Diagram of the Traveling Overwatch Task Frame

123

parts to the task frame. The SBSD diagram for the assault task frame (Figure 42) also

indicates that in the event an enemy air vehicle is detected that the ground unit should

scatter.

At this point there are two ways the SBSDs of task frames can be integrated into

SSST. The first is to allow the task frames to be represented as atomic nodes, and make

users right click on them to view the SBSD diagram of them. This option is allowed

because the user would not have the ability to change the SBSD for the task frames.

Therefore the SBSD for the task frames represent behavior of the entity at a lower level

of abstraciton and the task frames would still be the lowest level of detail available to a

person creating a scenario. The second option is to allow task frames that have SBSD

diagrams associated with them to be represented by multi-task nodes. By using multi-

task nodes to represent the tasks, the user is given control over the level of detail that is

shown in the diagram. The risk of representing the task frames as multi-task nodes is that

they could get confused with multi-task nodes that are changeable by the user. This issue

is further addressed in Case Study Three.

5.6.3 Case Study Three

The third case study looks at a scenario that involves the pickup of three US IC

Fire Teams and is from the OneSAF Program Office. The scenario is composed of three

US IC Fire Team A units, one US CH-47D flight of 3, and one US Fire AH-64D flight of

2. Figure 43 shows the execution matrices for the entities, while Figure 44 shows the

SBSD Diagrams created by SSST for the execution matrices in Figure 43.

124

Figure 42. An SBSD Diagram of an Assault Task Frame

The behavior of the entities in case study three are similar to the behaviors of the

entities in case study one and case study two. The behaviors assigned to the entities are

similar to the behaviors assigned to the entities in case study one, in that with the

exception of the mount task frame assigned to the Fire Team A units, all the units are

assigned multiple tasks frames. However, with the exception of the Mount Ground

Air/Unit each of the tasks frames assigned have complex behavior that can be represented

by a SBSD. The complex behavior of the task frames is similar to the behavior of the

task frames assigned in scenario two.

Figure 45 shows the SBSD for the generic RWA Fly Route task frame. In the

SBSD for the RWA fly route task frame, the react to ground contact activity takes up a

lot of space on the diagram, and is composed of several sub-activities. Therefore, it

becomes a candidate to be converted into a multi-task node. Figure 46 shows the react to

ground contact sub-activity expressed as an expanded multi-task node.

125

Figure 43. Execution Matrices for Units in Case Study Three

The RWA Hover and RWA Land task frames also contain the react to ground

contact sub-activity. As a result of the sub-activity being represented by a multi-task

node and not an atomic node it can be condensed in the SBSDs for the RWA Hover and

RWA Land task. Figure 47 shows the SBSD for the Hover Task Frame representing the

React to Ground Contact sub activity as a multi-task node. The condensed representation

makes the SBSD easier to read, but also give the user the ability to change the level of

detail shown in the diagram.

For certain task frames the SBSD diagrams of task frames for an entity in an

already created scenario may be different then the SBSD diagrams created for taskframe

that has not been assigned to an entity. The difference occurs when a user has to choose

126

Figure 44. SBSD Diagrams for the Execution Matrices in Figure 43.

127

Figure 45. SBSD for RWA Fly Route Task Frame

Figure 46. Expanded Multi-Task node for React to Ground Contact Sub Activity

128

from one of several options for a sub-activity or select if an activity or reaction is turned

on. Examples include either hovering or landing at the end of the FWA Ingress or how to

react to spotting an enemy. In the case where the SBSD represents a task frame assigned

to an entity, the diagrams will be streamlined as conditional and reactionary transitions

can be removed. Figure 48 shows the SBSD diagram for the RWA fly route task

assigned to one of the US CH47D vehicles in the scenario for case study three. Because

the reaction to the detection of a ground target in the task frame has been defined by the

creator of the scenario there is no reason to include the other reactions as possible courses

of action in the diagram. The current version of SSST cannot generate the SSST

diagrams for task frames assigned to entities, but could be modified to do so.

Figure 47. SBSD for Hover Task Frame

129

Figure 48. SBSD Diagram for the RWA Fly Route Task Frame Assigned to a US CH47D Vehicle

At the end of Case Study Two, the idea of converting task frames that had SBSD

diagrams associated with them into multi-task nodes was mentioned. In Case Study Two,

as each entity was only assigned one task frame, the user could easily pull up the SBSD

for each task frame and see what is going on. In this case study, an entity is assigned

multiple tasks, and looking at diagrams for individual task frames is no longer as

desirable. Therefore, for this scenario, converting the task frames into multi-task nodes

may have the potential to be more beneficial.

By converting the task frames into multi-task nodes the user can easily expand

and condense the nodes to display the desired level of detail. By representing the task

frames as multi-task nodes in the SBSD diagrams for the scenarios, the user can gain an

overall understanding of all the behavior assigned to the entity by expanding all the

130

nodes. However, by converting task frames into multi-task nodes, two different level of

abstraction are defined for atomic nodes. Instead of just representing task frames they

also represent sub-activities in the task frames. By having atomic nodes on two levels of

abstraction the complexity of the language and room for errors is increased. Figure 49

shows how the SBSD diagrams would look if the task frames were converted into

missions.

5.7 Evaluation of SBSD

Chapter 3 defines the evaluation criteria for SBSD. The criteria looked at the

expressiveness, frequency of errors, redundancy, locality of change, reusability,

reliability, translatability, and compatibility of the language. The case studies presented

earlier in this chapter serve as a basis on which to evaluate the language on in the above

areas.

The language proved to be expressive. All the major aspects of the simulation

scenarios could be expressed. These included temporal conditions such as performing a

task for a duration and the attributes assigned to the task set by the user. The language

was also able to show reaction behaviors, or behaviors that were not directly assigned to

the unit but performed as a response to another event. The parts of the scenario such as

the reactions of the F-14 in the first case study that were not able to be expressed through

the tool developed were a result of the limited capabilities implemented in the tool

created and from the information not being stored in the scenarios generated by the

OneSAF simulation. The language itself is sufficiently expressive.

131

Figure 49. SBSDs for Entities in Scenario Three with Complex TaskFrames Represented as Multi-

task nodes

The one thing that was difficult to express, however, was the order of the reaction

behaviors if two or more reactions took place during the execution of a behavior

represented by one node. For example, in the first case study the language provides no

132

way, outside of the attributes of the atomic node, to indicate the order in which air attack

behaviors are executed.

In addition to expressiveness, the language indicates a low potential for errors. In

the case studies conducted there were no errors. However the case studies are not

completely representative of all the possible scenarios and were generated by a computer.

If the diagrams were composed by a human the frequency of errors would most likely

increase. The potential for errors is present in the misuse of the transitions. As

conditional and reaction transitions diagrams are similar, it is possible they could be

confused. Future work should look at human studies to verify this finding.

The case studies indicate there is no redundancy in the model. At no point in the

case studies were there multiple choices for the type of node or transition to use. Each of

the transitions is well-defined, so that the type of transitions represented can be broken up

into distinct groups that do not overlap. The same applies to the two different types of

nodes in the language. Furthermore, the automation of the diagrams from the scenario

files serves as further proof of no redundancy in the language.

SBSDs also limit the impact of change in the diagram. A user can change the

attributes of a node or interchange atomic nodes and missions with other atomic nodes

and missions without affecting the rest of the diagram. The sequence of the nodes can

also be changed, and the only nodes affected or those whose incoming or outgoing

transitions are changed.

Furthermore, because the sequences of nodes can be grouped together the

language also provides reusability. By defining a sequence of tasks and grouping them

into a mission the user is given the ability to re-use that sequence of tasks over again.

133

The user is also able to change the value of the attributes of each node each time the

mission is assigned, expanding the possibilities for re-use.

Translatability and reliability appear to be the weakest areas of SBSD. By itself,

without the extensions of a specific simulation program, the base language is not

completely reliable or translatable. However, through extensions and constraints on the

base language and the development of software tools supporting the language, SBSD can

have both translatability and reliability. The ability of SSST to generate SBSDs shows

one aspect of the translatability. If an SBSD can be created from a scenario file, then

SBSDs should also be able to be translated into the scenario language used for simulation

tools. If the required parameters, for each behavior node representing a task frame in

OneSAF, were incorporated into the tool developed, the diagrams would then provide the

necessary information for scenario generation, when linked back to OneSAF. Due to

time constraints this capability was not implemented. It is the requirement of needing

constraints on the language in order to generate scenario files from SBSDs that give

SBSD a low rating for translatability.

The language is also not completely reliable when applied to different simulations

as SBSD diagrams are not designed to meet the constraints of the all the different

simulations. However, reliability can be provided through tool support. The tools can

prevent users from putting the components together in a way that is incorrect for specific

simulations. The tool can also enforce required attributes of nodes and other constraints

on the language. Because a tool is required to provide consistency, SBSDs do not rate

high for reliability.

134

Finally, looking at the how the language evaluates against the above criteria one

sees that it rates well in compatibility, because it evaluates well against the majority of

the other criteria. There is not one area of criteria that SBSD favors strongly. Although,

SBSD has reliability and translatability problems the problems are fixed by extending the

language for specific simulations and tool support.

5.8 Summary

This chapter presented the application of the simulation behavior specification

diagram (SBSD) and treemaps to scenarios generated by OneSAF. OneSAF is a

simulation currently under testing and development by the United States Army. In

OneSAF users create scenarios by assigning sequences of pre-defined tasks frames to the

entities in the scenario. Task frames are a set of concurrently executing tasks and

represent high-level behaviors such as “move” or “air attack.” Transitions between task

frames can either take place upon the completion of a previous task or after certain

temporal conditions are met. Furthermore, reactive task frames can be added to the

assigned sequences of tasks in response to other events in the simulation.

In order to apply SBSD to the behaviors assigned to entities in the scenario a Java

program, SSST was created. The Java program reads in a text scenario file and then

creates the relationships between the entities and their assigned task in memory. After

the scenario is read, users can view, edit, or create missions for the entities in the

simulation. The tool has the potential then to write these modifications back out to the

scenario file. The tool also has the capability to show the structure of the units in the

135

scenarios through treemaps. Treemaps allow users to view information about scenarios

that facilitates the decision-making process.

Three case studies were performed using scenarios generated by OneSAF. The

case studies served as a basis for evaluating the SBSD against the criteria set in Chapter

3. The case studies demonstrated that although the language was not yet fully

translatable or reliable, it was expressive, had a low frequency of errors, had no

redundancy, and was re-usable. Furthermore, through the extension of SBSD to specific

simulation domains SBSD will become more translatable and reliable.

136

VI. Conclusion and Future Work

6.1 Introduction

This chapter summarizes the research conducted in relation to the objectives

stated in Chapter 1. First, the motivation behind the research is reviewed. Then the

diagrams resulting from the research are discussed and evaluated. Finally, the chapter

concludes with several different avenues for future work.

6.2 Motivation and Objectives

As stated in Chapter 1, the overall objective of the research conducted in this

thesis was to create a visual language that aids in the comprehension and composition of

composable simulation scenarios. This objective was further narrowed down to the

development of a visual language that describes the behavior of components serving as

entities in simulation scenarios and to the application of treemaps to the hierarchy of

entities in the scenarios.

The use of a visual language to describe simulation scenarios makes scenarios

easier to comprehend and build for several reasons. First, diagrams are more useful than

text for these purposes because they help the learner build mental models that

demonstrate how processes work. Diagrams are also better at showing relationships than

text alone.

However, despite all the current behavior specification methods currently in use,

none of the specifications were suited for the representation of the high-level behavior of

entities in simulations. In particular, none of the diagrams allowed for the distinction

137

between behaviors that were assigned and behaviors that occurred as a result of events in

the simulation. Therefore Simulation Behavior Specification Diagrams (SBSDs) were

developed.

6.3 Simulation Behavior Specification Diagrams

 SBSDs are a variation of process dependency diagrams designed to represent the

high-level behavior of entities in battlefield simulations. The components of the

diagrams are atomic nodes, multi-task nodes, regular transitions, conditional transitions,

permanent reaction transitions, and temporary reaction transitions. The nodes represent

behaviors executed by the entity they are assigned to while the transitions specify the end

of an entity performing one behavior and starting another behavior.

 SBSDs directly support composability by allowing for a sequence of tasks to be

grouped together into a multi-task node. The multi-task node can then be used in other

sequences of behaviors assigned to units and entities or other multi-task nodes. By

providing this capability, the diagrams allow the user to specify the level of detail desired

and promote re-use of commonly used sequences of behaviors. Like atomic nodes, the

multi-task nodes have attributes that can be modified by the user.

 SBSDs also support the idea of reaction transitions. In a mission-level model, an

entity is assigned a mission or sequence of tasks. However during the execution of the

mission the entity might divert to perform another task based on what occurs in the

environment of the simulation. SBSDs allow for these behaviors to be marked by a

special type of reaction. Furthermore, whether or not the entity returns to the original

behavior is also indicated.

138

 Upon evaluation of the language, SBSD was able to represent all of the aspects

needed to accurately represent the target domain. Through the inclusion of reaction

transitions the diagrams are able to show reactions, while through conditional transitions

temporal conditions are able to be represented. Composability and a high-level of

abstraction are provided by the inclusion of multi-task nodes which allow the user to

control the level of abstraction shown in the diagrams. Furthermore, through the use of

attributes in the nodes, parameters specified by the user in scenario development are also

represented in SBSDs.

 In order to evaluate the language a Java program, Simulation Scenario

Specification Tool (SSST), was implemented to apply SBSDs to OneSAF simulation

scenarios. OneSAF is a mission-level simulation used by the United States Army. SSST

works by reading in the simulation scenarios created by OneSAF and then displaying the

behaviors either assigned to, or performed by, the entities in the simulation. Through the

use of SSST, three case studies were conducted on OneSAF simulation scenarios.

Examination of SBSDs using the evaluation criteria stated in Chapter 3 showed

the language rates highly in the areas of expressiveness, frequency of errors, redundancy,

locality of change, and reusability. The two areas the diagrams rated low in were

translatability and reliability. By extending and constraining the language for specific

simulations the language will rate higher in translatability and reliability.

6.4 Application of Treemaps

In addition to the creation of SBSD, the information visualization technique of

treemaps was also applied the hierarchy of units in mission-level scenarios. Treemaps

139

are an information visualization technique used to aid in decision-making. Several

different aspects of the scenarios were able to be shown through treemaps. In the

treemap portion of SSST, the size of the forces and the capability of the forces were

visually shown using treemaps. Treemaps can visually show users the size of forces and

entities in forces without having to textually display the size of each entity. Treemaps

also provide the user a view of all the entities participating in the scenario without having

to look at multiple pages or expand and minimize nodes in a tree.

6.5 Future Work

 Further research that can be conducted in the area of visual representations for

composable simulations can be divided into two main areas. The first main area is the

further development and application of the Simulation Behavior Specification Diagram

(SBSD), while the second area focuses on adapting UML or creating new visual

languages to represent the aspects of composable simulations that are not addressed by

SBSD or treemaps.

6.5.1 Further Development of SBSD

The research conducted for this thesis addresses only the basics of the high-level

behavior of entities in simulation scenarios. It is designed to be extendable to describe

the behavior of entities in multiple levels of simulation. In order to make SBSD usable

for multiple simulations more work needs to be conducted on the application of SBSD to

other simulation systems outside of OneSAF. Ideally, a tool that can read in several

different simulation scenario files and then allow the user to view and edit the behavior of

the entities in the system can be created. By having a tool that can read multiple

140

simulation scenarios, the next step of converting scenarios for one simulation into another

simulation is closer.

More work needs to be done on the program used to apply SBSD to OneSAF.

Although the current tool built to apply SBSD to OneSAF allows for the behavior of

entities in the scenarios to be viewed, the user cannot modify the behavior and then save

the scenario back out to a file. Other current shortcomings of the tool are that the

capacities of users to view and edit the parameters of the behaviors assigned to entities is

limited to a select few tasks. In order for SBSD to be completely integrated with

OneSAF, the user will need to be given the ability to have the same functionality given to

them by the OneSAF GUI in the tool that applies SBSD to the simulation scenarios.

Finally, another direction of research is the creation of a tool that allows the user

to adapt the components of SBSD to meet the syntax and semantics of the simulation

they are currently working on. By creating a tool that allows users to define their own

syntax for the components, it gives the user more control and flexibility in the use of

SBSD.

6.5.2 Expansion of the Visual Language for Simulation Scenarios

Another area that further research can be conducted in is the expansion of either

UML or the creation of a new visual language to describe aspects of composable

simulations and simulation scenarios outside of behavior specification. The research

conducted for this thesis did not look at several aspects of composable simulations that

can be described visually. Specifically the research did not address the architecture or

definition of the entities used in the simulation. Nor do the diagrams presented express

141

communications or relationships between the entities outside of the hierarchical

command structure of the entities. Finally the diagrams presented do not address the

structure of the simulation systems. These areas are needed in a visual language that

completely represents simulation scenarios. Two options in the development of this

language are to create either a new visual language or adapt a current visual language

such as UML. UML is a potential candidate language as it already addresses some of the

aspects addressed above. The visual meta-language for generic modeling language

created by Hakan Canli is also another potential language that can be expanded to

describe the different aspects of simulation scenarios [CAN02].

6.6 Summary

In the world of simulation and modeling, composable simulations have the

potential to offer many benefits; however, many obstacles need to be overcome first. In

this research, a visual language is applied to simulation and modeling in order to reduce

the complexity of, and serve as a standard descriptor for, certain aspects of composable

simulation scenarios. The results of this research are Simulation Behavior Specification

Diagrams (SBSD) and the application of treemaps to simulation scenarios. SBSDs

proved to be better suited to represent the high-level behavior of entities in simulation

scenarios then the other behavior specification techniques studied. Case studies showed

that SBSDs were expressive, had a low frequency of errors, had no redundancy, and

support reusability. By placing constraints on the language and through tools the

translatability and reliability of the language can be increased. Furthermore, treemaps

were successfully applied to the hierarchy of entities in scenarios to visually display the

142

size of each unit in the hierarchy. The user can also define other properties of the

treemap, such as color, in order to visually display additional properties of the hierarchy

and units in the hierarchy.

143

 Bibliography

[ALL00] Allain, Laurent and P. Yim. “Modeling Information System Behavior
with Dynamic Relations Nets,” Journal of Universal Computer Science,
10:1109-1130 (November 2000).

[ARO99] Aronson, Jesse and P. Bose. “A Model-Based Approach to Simulation

Composition,” Proceedings of the 1999 Symposium on Software
Reusability. 78-82. Los Angeles: 1999.

[BID00] Biddle, Mark and P. Constance. “An Architecture for Composable

Interoperability,” Proceedings of the 2000 Spring Simulation
Interoperability Workshop. 2000

[BUS03] Bush, Frank. OneSAF TEMPO Representative. Electronic Message. 13
 January 2003.

[BRO00] Brook, Phillip, J. Ostroff, and R. Paige. “Principles for Modeling

Language Design,” Information and Software Technology, 42: 665-675
(July 2000).

[CAN02] Canli, Hakan. A Visual Meta-Language For Generic Modeling. MS

thesis, AFIT/GCE/ENG/02M-1. Graduate School of Engineering and
Management, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, March 2002.

[CHA99] Chang, Xinjie. “Network Simulations with Opnet,” Proceedings of the

31st Conference on Winter Simulation. 307-314. Phoenix: 1999.

[CLA99] Clark, Tony, A. Evans, R. France S. Kent, Stuart, and B. Rumpe.

“Response to UML 2.0 Request for Information Submitted by the precise
UML group.” Document submitted in response to the OMG’s request for
information. n. pag. http://cgi.omg.org/docs/ad/99-12-16.pdf. July 2002.

[COU97] Courtemanche, Anthony, S. von der Lippe, and J. McCormick.

“Developing User-Composable Behaviors,” Proceedings of the 1997 Fall
Simulation Interoperability Workshop. Orlando, FL: Institute for
Simulation and Training, 1997.

[CRA98] Crain, Robert. “Simulation Using GPSS/H,” Proceedings of 29

Conference on Winter Simulation. 567-573. Atlanta: ACM Press,1997

144

[DAH98] Dahmann, Judith, R.Fujimoto, and R.Weatherly. “The DoD High-level
Architecture: An Update,” Proceedings of the 30th Confernce on Winter
Simulation. 797-804. Washington D.C.: IEEE Computer Society
Press,1998

[DAV00] Davis, Paul, P. Fishwick, M.Overstreet, and D. Pegden. “Model

Composability as a Research Investment: Responses to the Featured
Paper,” Proceedings of the 32nd Conference on Winter Simulation. 1585-
1591. Orlando: Society for Computer Simulation International, 2000

[DES00] Desel, Jörg. “Teaching System Modeling, Simulation, and Validation”

Proceedings of the 32nd Conference on Winter Simulation. 1669-1675.
Orlando: Society for Computer Simulation International, 2000

[DMS02] Defense Modeling and Simulation Office. “Proposal For Composable

Modeling and Simulation Studies.” 2002.

[DMS02b] Defense Modeling and Simulation Office. “Concept of Operations for

Composable Modeling and Simulation,” Workshop on Composable
Modeling and Simulation. 2002.

[DMS02c] Defense Modeling and Simulation Office. “Notional Composable

Modeling and Simulation Languages, Databases, and Data,” Workshop on
Composable Modeling and Simulation. 2002.

[DMS02d] Defense Modeling and Simulation Office. “Component-based

Architecture and Modeling and Simulation,” Workshop on Composable
Modeling and Simulation. 2002.

[DMS02e] Defense Modeling and Simulation Office. “Two Aspects of

Composability:Lexicon and Theory,” Workshop on Composable Modeling
and Simulation. 2002.

[DMS95] Directorate of Modeling, Simulation, & Analysis. Modeling and

Simulation Master Plan. Web Document. pag. n.
http://www.afams.af.mil/webdocs/afmsmp/. August 2002.

[FLO02] Flower, Martin and C. Kobryn. “Customizing UML for Fun and Profit.”

Article from Software Development Online. pag. n.
http://www.sdmagazine.com/documents/s=7224/sdm0207d/0207d.htm.
July 2002.

[FLO99] Flower, Martin and K.Scott. UML Distilled (2nd edition). Boston:

Addison-Wesley Publishing Company,1999.

145

[HOR98] Horn, Robert. Visual Language Global Communication for the 21st
Century. MacRovu Inc, 1999.

[LAR01] Larsen, Karin, C.Burns, O. Nnedu, and C. Sons. “Entity and Behavior

Composition in CGF Simulations Using the Synthetic Common
Operating Environment,” Proceedings of the 1997 Fall Simulation
Interoperability Workshop. 2001.

[JO9H1] Johnson, Brian and B. Shneiderman. “TreeMaps: A Space-filling

Approach to Visualization of Hierarchical Information Structures”,Proc.
of the 2nd International IEEE Visualization Conference. 284-291. San
Diego: Oct. 1991.

[KAS00] Kasputis, Stephen and H. Ng. “Model Composability: Formulating a

Research Thrust: Composable Simulations”, Proceedings of the 32nd
Conference on Winter Simulation. 1577-1584. Orlando: Society for
Computer Simulation International, 2000.

[MAR01] Martinez, Julio. “EZStrobe- General-Purpose Simulation System Based

on Activity Cycle Diagrams,” Proceedings of the 33nd Conference on
Winter Simulation. 1556 – 1564. Arlington: IEEE Computer Society,
2001.

[MCC00] McCoramck, Jenifer and S. von der Lippe, “Embracing Temporal

Relations in Composable Behaviors Technology.” Proceedings of the
1999 Fall Simulation Interoperability Workshop. 1999.

[OMG01] Object Management Group. “Unified Modeling Language (UML),

Version 1.4”, Specification for the Unified Modeling Language. n. pag.
http://www.omg.org/technology/documents/formal/uml.htm. Published
2001, accessed July 2002.

[OMG02] Object Management Group. “Introduction to OMG’s Unified Modeling

Language (UML),” Unpublished article. n. pag.
http://www.omg.org/gettingstarted/what_is_uml.htm. July 2002.

[PUC01] Puckett, Jason, K. Johnson, and B. Wise. “Using Finite State Machines

For Behavior Representation With Composable Objects in NASM,”
Proceedings of the 1999 Spring Simulation Interoperability Workshop.
1999.

[RIC00] Richter, Hendrick and L. Marz. “Toward a Standard Process: The Use of

UML for Designing Simulation Models,” Proceedings of the 32nd
Conference on Winter Simulation. 394-398. Orlando: Society for
Computer Simulation International, 2000.

146

[SEL94] Selic, Brian, G. Gullekson, and P. Ward. Real Time Object Oriented

Modeling. John Wiley & Sons, 1994.

[STY01] Stytz, Martin and S. Banks. “Enhancing the Design and Documentation

of High-level Architecture Simulations Using the Unified Modeling
Language,” Proceedings of the 1999 Spring Simulation Interoperability
Workshop. 1999.

[STR03A] Stricom. “History of OneSaf,” Unpublished article. n. pag.

http://www.onesaf.org/public1saf.html. September 2002.

[STR03B] Stricom. “OTB 1.0 Software Architecture Design and Overview

Document,” OneSAF CD. November 2000

[STR03C] Stricom. “OTB 1.0 Users Manual Vol. 1,” OneSAF CD. November 2000.

[STR03D] Stricom. “OTB 1.0 Users Manual Vol. 2, “ OneSAF CD. January 1999.

[VON99] von der Lippe, Sonia, J. McCormick, and M. Kalphat. “Embracing
Temporal Relations and Command and Control in Composable Behaviors
Technology,” Proceedings of the 9th Conference on Computer Generated
Forces and Behavioral Representation. 1999

[WIE98] Wieringa, Roel. “A Survey of Structured and Object-Oriented Software

Specification Methods and Techniques,” ACM Computing Surveys, 30:
459-527 (December 1998).

[ZIM02] Zimmerman, Armin. “Petri nets,” Unpublished article. n. pag.

http://pdv.cs.tu-berlin.de/~azi/petri.html. September 2002

